
1 June 2000 Delphi Informant Magazine

June 2000, Volume 6, Number 6

Cover Art By: Arthur Dugoni

ON THE COVER
6 Greater Delphi
Palm Conduits: Part I — Ron Loewy
Mr Loewy explains Palm applications, the databases they use, and how
to exchange information between Palm and PC, preparing the ground for
the sample conduit application presented in Part II.

FEATURES
10 In Development
Waking from Threadmare — Nikolai Sklobovsky
Mr Sklobovsky shares a robust, reliable, comprehensive, and relatively
simple approach to multi-threaded programming. Even veterans of
multi-threaded development will benefit from his insights.

16 On Language
Manipulating Events — Jeremy Merrill
Manipulating method properties by typecasting them as TMethod affords
us with some interesting capabilities, and can provide increased power
and flexibility to an application, as Mr Merrill explains.

21 Columns & Rows
Exploiting SQL Server 7 DMO: Part I — Jason Perry
Sharing impressive applications, Mr Perry begins a two-part series that
demonstrates using Microsoft SQL Server 7 Distributed Management
Objects (SQL-DMO) to develop database management tools.

27 OP Basics
Augmenting a Control — Ken Revak
Mr Revak demonstrates and compares the relative merits of four
approaches to extending native VCL objects: procedural, Windows mes-
sage-based, introspection, and via Delphi interfaces.

REVIEWS
33 Delphi COM Programming
 Book Review by Ron Loewy

DEPARTMENTS
2 Delphi Tools
5 Newsline
35 Best Practices by Clay Shannon
36 File | New by Alan C. Moore, Ph.D.

2 June 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

TurboPower Announces SysTools 3

 TurboPower Software Co.
announced SysTools 3, a new
version of its toolkit of system-
level routines for professional
Delphi and C++Builder devel-
opers. SysTools 3 improves pro-
grammer productivity by pro-
viding over 1,000 optimized,
time-tested routines that can be
incorporated into any Delphi or
C++Builder project.
 The library’s routines are logi-
cally grouped into units so pro-
grammers can include just what
they need. Units are provided
for string manipulation, date
and time math, generating bar
codes, manipulating the Micro-
soft Windows shell, high-preci-
sion math, financial and statisti-
UIL Releases Security System

IP*Works! Java Edition No
cal analysis, high-speed sorting,
astronomical calculations, and
expression evaluation.
 SysTools 3 also includes a
selection of reusable container
classes, such as stacks, queues,
deques, and trees. Among the
new features in this version
are the Explorer Components,
Network Management routines,
support for Regular Expression
Search and Replace, POSTNET
bar coding, an enhanced string
manipulation unit, Application
Control components, and sup-
port for VCL and COM devel-
opment.
 Explorer Components are
included for embedding the
capabilities of Windows Explorer
2.06

w Shipping
inside Delphi and C++Builder
applications. The new controls,
Explorer TreeView, Explorer
ListView, and Explorer Com-
boBox, can be used separately
or together to mimic Windows
Explorer functionality. They are
also useful for creating custom
versions of the Windows
common dialog boxes with
enhanced functionality.
 Support is included for
managing LAN Manager-com-
patible networks running Micro-
soft Windows.

TurboPower Software Co.
Price: US$249
Phone: (800) 333-4160
Web Site: http://www.turbopower.com
 Unlimited Intelligence Limited
announced the release of UIL
Security System 2.06, a method
to add end-user security to your
Delphi 3, 4, or 5 applications.
Applications using this system
can control what users and
groups have access to. This latest
update adds keyboard-only sup-
port and improved look and feel.
 UIL Security System supports
any database accessible by
Delphi, including all third-party
TDataSet descendants. In addi-
tion, no DLLs, ActiveX controls,
or external programs are
required; everything you need is
included in the executable —
a login dialog box, a user and
group management dialog box,
and a form policy, which allows
you to specify what controls are
disabled or hidden from people
who do not have access.
 In addition, UIL includes pow-
erful design-time tools, includ-
ing a form policy designer that
allows you to easily group con-
trols into access rights using
drag-and-drop. Users can edit
users and groups at design time
if needed.

Unlimited Intelligence Limited
Price: US$199 (limited-time offer).
E-Mail: info@uil.net
Web Site: http://www.uil.net
 devSoft Inc. announced
IP*Works! Java Edition, a pure
Java version of its IP*Works!
Internet Toolkit. The package
consists of 20 JavaBeans for
Internet programming, bringing
ease of use to developers of
Internet-enabled applications.
 The product eliminates much
of the complexity of developing
connected applications, and is
available in several editions,
including native Delphi and
C++Builder VCLs, ActiveX con-
trols, C++ classes, C libraries,
and JavaBeans.
 IP*Works! contains simple
high-level programmable com-
ponents, such as interfaces to
Internet Mail and Usenet
News, as well as powerful
TCP/IP programming tools
used to build generic clients
and servers. All components
have interfaces that shield
developers from the complexity
of TCP/IP programming. Cor-
porate developers will find the
features they need to enable
their applications to participate
in a TCP/IP network without
steep learning curves.
IP*Works! Java Edition imple-
ments standard protocols speci-
fied in Internet RFCs, and is
written in Java for portability
across platforms.

devSoft Inc.
Price: US$295
Phone: (919) 493-5805
Web Site: http://www.dev-soft.com
Brainbench Offers
Certification Exam Online

 Brainbench is offering certification exam-
inations online, allowing Delphi devel-
opers and other technical professionals
to test their skills. As a technical profes-
sional, you can use the test results to get
a better understanding of your strengths
and weaknesses or to earn a certification

that helps you get a better job.
 Upon registration, you will immedi-
ately receive a free test access code,
which allows you to take the multi-
ple-choice exam any time within the

next 30 days. You can register at
http://destinationsite.com/

c?c=62939.15491.0.142.0.
 If you pass the exam, Brainbench
will certify your skill and mail you a
certificate free of charge. Also, you

can make your certification available
online if you choose.

 Brainbench has 60 different exams
from which to choose.

http://www.turbopower.com
http://www.uil.net
http://www.dev-soft.com
http://destinationsite.com/c?c=62939.15491.0.142.0
http://destinationsite.com/c?c=62939.15491.0.142.0

3 June 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Seagate Introduces Crystal Reports 8

 Seagate Software announced
the release of Seagate Crystal
Reports 8, the company’s Web
and e-reporting solution. Seagate
Crystal Reports is the founda-
tion for Seagate Software’s line
of business intelligence solutions,
all of which expand and extend
Crystal Reports’ e-reporting
functionality. Crystal Reports 8
offers integration with Microsoft
Office and reporting tools for
Web and Windows developers.
Delphi Pages Offers Delphi
 The enhanced Web report
server provides greater scalability
and improved access to common
Web infrastructures (Lotus,
Microsoft, Netscape, and CGI-
based servers). Export support
for DHTML, new report view-
ers, and hyperlink capabilities
offer increased flexibility for
organizations looking to deploy
an all-encompassing reporting
system over the Web.
 Crystal Reports 8’s integration
 Pages CD Version
with Microsoft Office allows
users to create reports within
the Microsoft Excel or Microsoft
Access environments using Crys-
tal Reports Add-ins. By export-
ing reports to Word, Excel, and
RTF, any Crystal report can be
integrated into any Office docu-
ment.
 Seagate Crystal Reports 8
gives application developers the
reporting tools needed for
Microsoft Visual Basic, Visual
InterDev, Domino Designer, and
other development environ-
ments.
 The Report Designer Com-
ponent (RDC), which includes
more than 850 properties, meth-
ods, and events for control over
an application’s reporting engine,
offers key enhancements, includ-
ing creation of reports without
existing database connections;
report creation in multi-tier
applications using Microsoft
Transaction Server; and simple
integration of reports into Active
Server Pages applications.

Seagate Software, Inc.
Price: Standard Edition, US$149; Profes-
sional Edition, US$395; Developer Edition,
US$495.
Phone: (800) 877-2340
Web Site: http: //www.
seagatesoftware.com
 Delphi Pages is offering Delphi
Pages CD Version, a CD that
contains over 511MB of infor-
mation, over 1,100 components
(CD contains actual files), over
100 links to applications devel-
oped with Delphi, a
complete forum section,
tips, articles, news, and
links to other sites.
 The CD features a fully
searchable engine, quick
access to files, descrip-
tion, version infor-
mation, source informa-
tion, file sizes, buy-now
options, screenshots, date
submitted and updated,
and author information.
 Every three months, a
new CD will be devel-
oped for purchase. It will
include previous compo-
nents and information, as well as
all components added during the
quarter. You can also take advan-
tage of a reduced fee by subscrib-
ing on an annual or bi-annual
basis.
Delphi Pages
Price: US$29.95 (purchase online at
http://www.delphipages.com/cd/buycd.cfm).
Web Site: http://www.delphipages.
com/cd/

http://www.seagatesoftware.com
http://www.seagatesoftware.com
http://www.delphipages.com/cd/buycd.cfm
http://www.delphipages.com/cd/
http://www.delphipages.com/cd/

4 June 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

TechSmith Announces SnagIt 5.0

 TechSmith Corp. announced
the SnagIt 5.0 screen capture tool
for Windows. SnagIt enables users
to capture desktop images, text,
and video to a file or to the
printer with a single mouse click.
The newest release includes SnagIt
Studio, an object-based vector
drawing tool, so users can quickly
mark up any screen capture or
InstallShield Software Ships
image. Using one tool to grab and
annotate screen shots saves users
time and eliminates the need for
additional applications.
 Another new feature is “cap-
ture profiles” to configure fre-
quently used settings. Webmas-
ters and Web developers can
use the new “Web-cam” feature
to automatically send captures
 InstallShield Pro 2000 Seco
to the Web from the desktop.
 SnagIt 5.0 works for Win-
dows 95/98/NT/2000.

TechSmith Corp.
Price: US$39.95; quantity discounts and
site licenses are available.
Phone: (517) 333-2100
Web Site: http://www.techsmith.com/
download.asp
nd Edition

 InstallShield Software Corp.
announced InstallShield Profes-
sional 2000 Second Edition, the
latest version of its installation-
authoring solution for ISVs and
corporate developers. InstallShield
Professional 2000 Second Edition
offers expanded support for code
reuse and the latest version of
the Microsoft Windows Installer-
based service.
 InstallShield Professional 2000
Second Edition features new
releases of two products,
InstallShield Professional 6.1, the
latest version of the setup-author-
ing tool, and InstallShield for
Windows Installer 1.1, a com-
prehensive solution for creating
Microsoft Windows 2000 logo-
compliant installations. The two
products combine to enhance
productivity, usability, and con-
trol for professional Windows
developers distributing applica-
tions with sophisticated installa-
tion requirements.
 Second Edition’s expanded fea-
tures include an Object Develop-
ment Kit (ODK) in InstallShield
Professional 6.1, which allows
setup authors to create and dis-
tribute reusable pieces of instal-
lation projects. InstallShield for
Windows Installer 1.1 includes
new InstallScript support, a Spy
Repackager, and enhanced migra-
tion capabilities.
 InstallShield Professional 6.1
also includes Microsoft Millen-
nium compatibility. Professional
6.1 provides built-in support for
the System Restore feature found
in Microsoft’s upcoming Mil-
lennium operating system (the
next consumer Windows release).
With this feature, users can restore
PCs corrupted during software
installation. The System Restore
feature automatically monitors and
records key system changes to the
user’s PC. This functionality lets
the end user undo a change that
may have harmed their system.
 With version 1.1 of
InstallShield for Windows
Installer, InstallShield provides
enhanced functionality that
allows developers to take advan-
tage of Microsoft’s Windows
Installer-based service.
 InstallShield for Windows
Installer 1.1 also provides sup-
port for the new features in
Microsoft’s Windows Installer
1.1, including COM+ support,
side-by-side components, and
nested installation support.
The Windows Installer 1.1
engine will be included in
an InstallShield for Windows
Installer installation by default,
providing support for Micro-
soft Windows 95, Windows
98, Windows NT 4, and Win-
dows 2000.

InstallShield Software Corp.
Price: US$995
Phone: (800) 374-4353
Web Site: http://www.installshield.com

http://www.techsmith.com/download.asp
http://www.techsmith.com/download.asp
http://www.installshield.com

5 June 2000 Delphi Informant Magazine

News

L I N E

June 2000

C. Robert Coates Announces Resignation from Inprise Board of Directors

Inprise to Supply Ericsson for Network
Management Integration
 Dallas, TX — C. Robert
Coates, CEO of Management
Insights, Inc., has resigned
from the Board of Directors of
Inprise Corp.
 Mr Coates resigned on
Sunday, February 6, at 8:00
AM, prior to the vote on the
merger of Inprise and Corel
Corp. Mr Coates plans to com-
municate the reasons for his
resignation in a future letter to
shareholders and in a detailed
letter to Inprise that Inprise
must then disclose in an SEC
Form 8-K filing.
 Mr Coates says he will oppose
the merger unless it results in
substantially higher prices for
Inprise shareholders and/or can
be shown by Inprise’s CEO to
clearly benefit Inprise’s customers.
 He hopes that the Inprise
Board will consider other offers
for parts or all of Inprise, or con-
tinue to operate Inprise as an
independent company so that it
Inprise/Borland Announces
can follow through on the many
positive press releases issued in
the last five months.
 Mr Coates currently owns
3,005,440 shares of Inprise Corp.
 Management Insights, Inc. is
a diversified management consult-
 Borland C++Builder 5

Inprise/Borland Announces
ing, venture capital, and invest-
ment firm. Its customers include
a large number of Fortune 500
companies. Among its public
investments are large equity stakes
in Inprise Corp., Evolving Sys-
tems, and Northfield Labs.
 Stockholm, Sweden — Inprise
Corp. announced that Ericsson
has selected VisiBroker CORBA
technology as a key part of its
Operation Support System (OSS).
Inprise’s object request broker will
form the basis of the future
architecture within Ericsson’s OSS
products for managing both GSM
networks and forthcoming broad-
band CDMA networks.
 As operators look to upgrade
their mobile phone network
infrastructure, they need to pro-
vide an industrial-strength way
of ensuring network availability
and performance.
 The Ericsson OSS is a tool
for monitoring mobile networks
and responding quickly to net-
work service issues. The goal of
OSS is to provide mobile phone
users with the highest quality of
service. VisiBroker is planned to
enable Ericsson to specify Inte-
gration Reference Points for vari-
ous systems, which are defined in
Interface Definition Language.
By adopting an industry-stan-
dard CORBA implementation,
third-party vendors of network
management software will be
able to integrate their network
management offerings with Eric-
sson’s OSS in a consistent way.
 The CORBA architecture allows
operators to both manage indi-
vidual network nodes, as well as
interface with third-party man-
agement systems from other
equipment vendors. Inprise is also
working with Prism Technology
to provide a number of additional
CORBA services to Ericsson.
 The financial terms of the
agreement were not disclosed.
 JBuilder 3.5
 Scotts Valley, CA — Inprise/-
Borland announced Borland
C++Builder 5, the new version of
its ANSI C++ development system
for Windows 95/98/NT/2000.
C++Builder 5 is available in three
editions: Enterprise, Professional,
and Standard.
 Inprise/Borland also announced
that the free Borland C++
Compiler, the foundation of
C++Builder 5, has received over
160,000 downloads since its
release. Developers who start
with the compiler are able to
seamlessly move into the full
C++Builder environment for
visual, database, Internet, and
distributed development.
 C++Builder 5 brings together
Borland’s C++ development
environment with the latest
Internet standards: XML and
HTML 4. A detailed list of fea-
tures included in C++Builder 5
can be found at http://www.
borland.com/bcppbuilder/.
 Customers may order
C++Builder 5 on the Web at
http://www.borland.com and
from major software distribution
channels. C++Builder 5 Enterprise
has an estimated street price (ESP)
of US$2,499 for new users.
C++Builder 5 Professional has
an ESP of US$799. C++Builder
5 Standard has an ESP of
US$99.95. (These prices are in
US dollars and apply only in the
United States. Customers outside
the US should contact their local
Inprise/Borland office, distributor,
or representative.)
 London, England — Inprise/-
Borland announced JBuilder 3.5.
JBuilder 3.5 Enterprise is a rapid
application development tool for
creating business, database, and
distributed applications based on
the Java 2 platform. It supports
development on the Linux, Win-
dows, and Solaris platforms.
 JBuilder 3.5 includes support
for J2EE (Java 2 Platform,
Enterprise Edition) so pro-
grammers can deliver reliable
and scalable enterprise Java
applications. JBuilder 3.5 pro-
vides wizards and visual tools
for creating reusable JavaBeans
and Enterprise JavaBeans tech-
nology. Included is a devel-
opment license for VisiBroker
for Java and the Inprise Appli-
cation Server 4.0, which sup-
ports J2EE technology stan-
dards. A detailed matrix of fea-
tures included in JBuilder 3.5
is located at http://www.
borland.com/jbuilder/feamatrix.
 JBuilder 3.5 is available in two
versions: Enterprise and Profes-
sional. Both are available on the
Web at http://shop.borland.com
and from major software distribu-
tion channels.
 JBuilder 3.5 Enterprise has
an estimated street price (ESP)
of US$2,499 for new users.
JBuilder 3.5 Professional has an
ESP of US$799. JBuilder 3.5
Foundation, a standard version of
JBuilder, is available for free down-
load at http://www.borland.com/
jbuilder/foundation.

http://www.borland.com/bcppbuilder/
http://www.borland.com/bcppbuilder/
http://www.borland.com
http://www.borland.com/jbuilder/feamatrix
http://www.borland.com/jbuilder/feamatrix
http://shop.borland.com
http://www.borland.com/jbuilder/foundation
http://www.borland.com/jbuilder/foundation

6 June 2000 Delphi Informant Magazine

Greater Delphi
Palm Handheld Devices / COM

By Ron Loewy
Palm Conduits
Part I: An Introduction to Palm Programming

Colin Chapman would have loved Palm handheld computing devices. It’s a simple
machine that sacrifices a lot of un-needed features to excel in performing its task.
Chapman (for the un-initiated) is the genius that
created Lotus, the famous race and sports car man-
ufacturer. While his Formula 1 competitors at the
start of the 1960s (Ferrari and Porsche, among
others) concentrated on creating bigger, more pow-
erful engines that required bigger and heavier cars,
Chapman was busy inventing race cars that used an
engine that started its life as a fire-fighting water
pump. He overcame the engine’s lack of power
and sophistication by creating smaller, lighter, and
wind-cheating cars. He used to joke that to make
a car competitive, he would add “lightness.” This
out-of-the-box thinking saw a dominance of Lotus
race cars during the 1960s and early 1970s.

As Delphi programmers, we’re used to the PC
industry’s fast expanding machines. Faster proces-

sors, bigger hard disks, and
more memory run bigger
operating systems, sophisti-
cated middleware, and capa-
ble database servers. Our
applications take advantage
of sophisticated GUI widgets
and gizmos, and use life-like
multimedia elements. And, as
we all know, no application is
ever finished without a cool
splash screen and scrolling
credits in the About box.

Palm devices — for the few
that retreated to their under-
cover Y2K shelters several
years ago and might not
know — are the small, mostly
black-and-white devices (Palm
Computing just announced
a color version at the time
of this writing) marketed by
3Com that include a set of
pre-defined applications, such
as a ToDo list, Memo Pad,
Address list, and, in newer
models, Expense Report and
E-mail. Unlike earlier organizers that were limited to
a pre-defined set of applications, the Palm devices
can be extended; new applications can be written or
purchased and installed on the machine.

The Palm designers learned from the mistakes of
the Apple Newton, and provided a convenient way
to exchange data between the Palm device and a
PC. This is the reason for the success of the Palm
platform, where other handheld devices failed: The
Palm devices aren’t replacements for the PC, but
mobile extensions of it. They’re not designed for
massive data entry or big processing capabilities, but
as viewers of data with limited updating capabilities.

The design of Palm applications emphasizes simple
operation and encourages data entry on the PC when
possible. Consider a traveling salesman that needs his
products and contact information when he’s on the
road, but would rather create his customer list and
inventory/marketing information on a PC. When he’s
in the office, he uses general-purpose applications
(such as Office) or custom applications; when he’s on
the road, he carries the important information for his
trip on his lightweight Palm device, which will last for
several months on a set of AAA batteries.

This two-part series will introduce you to the
concepts of Palm programming and describe a
method of exchanging information with Palm
devices using Delphi. It’s out of the scope of
this series to teach you Palm programming (there
are many good references, books, and tools that
can be used for this). I will, however, explain
the theory behind Palm applications, the data-
bases they use, and the methods used to exchange
information with the Palm on the PC. In Part II
of this series, we’ll continue by writing a sample
conduit for the ToDo application that comes
standard with the Palm OS.

Palm Programming
Before we jump into the technical details of
exchanging information with Palm devices from a
Delphi application, let’s try to understand a bit

Greater Delphi
more about Palm applications, the way Palm devices store data, and
how the exchange process occurs.

Device Programming
Palm devices are based on Motorola processors. They run an operating
system named Palm OS that provides simple user interface, memory, and
data-storage services. Newer versions of the Palm OS (the Palm III and
later) also provide network services via TCP/IP, Infrared Beaming inter-
device information exchange, and Web-clipping services (Palm VII).

The most important — and disappointing — information about
Palm device programming is that Delphi cannot be used to create
Palm applications. The official language supported by Palm Com-
puting is C or C++, using the CodeWarrior compiler/IDE from
Metrowerks Corp. A free GNU C/C++ compiler is also available, and
several other tools (mostly using a version of Basic) are available from
third-party vendors.

A Palm application uses “forms” to display its user interface. Think of
a form as a Windows window. Forms (like the Windows we’re familiar
with) contain controls, such as edit boxes, buttons, list boxes, tables, etc.
In other words, forms contain everything you’ve come to expect from a
GUI interface. If you look at a Palm application’s C source code, you’ll
see it’s not very different from early Windows or Mac source: a big event
loop for the application routes messages to form event handlers. If you
remember the (good?) old WinMain days of Windows applications, you
know what Palm application source code looks like.

The small amount of memory and storage available reunite other
old programming friends you thought you said good-bye to, such
as segmented memory, near and far jumps, and other small-
footprint development gotchas.

Coming from Delphi’s RAD development environment — with its two-
way tools, visual object browser and wizards, helpers, and experts —
you’ll find that programming Palm applications in CodeWarrior is like
camping: It’s a lot of fun to “rough it” for a while, but I still like to
come back to the luxury of hot water for my showers and a refrigerator
I don’t need to carry on my back. Not that CodeWarrior is like being
thrown out to the sharks armed with VI as your editor, but it’s closer
to the old days of Borland Pascal for Windows for code writing, with
its Constructor visual form designer, which resembles the old Resource
Workshop we used before Delphi came along.

Databases
A big shock to anyone that came from conventional PC/Server/-
Mainframe programming to Palm device programming is the fact
that a Palm device does not have traditional persistent storage
devices, like hard disks, tape drives, CD-ROMs, or diskette drives.
Instead, a Palm device partitions its memory into two parts: a persis-
tent part, used to store applications and databases which remain in
memory even when the device is turned off (at least as long as there
is power in the batteries); and dynamic memory, used like dynamic
memory on any operating system.

A Palm application can’t write directly to the “protected” partition
of memory, thus the applications and databases are protected
from memory overwrite bugs. The Palm OS provides a set of
database access API functions that allow you to read, write, and
search a database.

As discussed in the introduction, the Palm device was designed to
work as an extension of the PC, with easy-to-synchronize data. The
7 June 2000 Delphi Informant Magazine
database structure reflects this design. A Palm database is a collection
of (variable size) records in memory. Every record has a record index
used to read, write, and search.

Every Palm application has a “Creator” ID associated with it. Like-
wise, a database has a “Creator” ID and type associated with it, and,
of course, its name. This ensures that it’s easy to associate a database
with the application that uses it.

Every database has more “global” information associated with it (for
example, a list of 0 to 15 categories associated with the database). Every
record in the database can be associated with one of the categories, and
allows for easy filtering of data. For example, the Address Book contains
pre-defined categories for business-related entries, private entries, and
untitled entries. You can define new categories, such as Family, People I
Play Soccer With, or whatever strikes you, as categories you need.

Each record in the database is identified using a unique record ID
and has a category ID associated with it. Thus you can associate your
mother’s second cousin’s address with the Family filter, and the guy
from whom you bought a radiator for your 1936 Morgan with your
Car Buddies category. Each record can have a different size; to save
space, records are packed in memory. A string field, for example, will
be stored by its length, plus 1 character (the null character used in C
for an end-of-string) instead of a pre-defined length with spaces in the
unused characters.

Every record in the database also has an associated attribute field.
This field includes attributes used for synchronization of data with
the PC. Some of the flags found in this attribute field are:
§ Deleted flag: When a user deletes a record on the Palm device,

the record remains in the database until synchronization with
this flag is turned on. When synchronization happens, the PC
database is updated and the record can be physically removed
from the database.

§ Modified flag: When a user modifies the values of the record on
the Palm device, this flag is turned on. During synchronization,
the PC application knows it needs to update its own database
based on this flag.

§ Private property: Determines if the record is always shown. If
the record is marked private, you need to use a password in
the Palm security application to display the record. This ensures
that if your Palm is stolen, some of the information can be
hidden from prying eyes.

§ Archived property: This flag is turned on for deleted records that
need to be archived on the PC during synchronization.

Conduits
A conduit is a piece of code that sits on the PC and performs
the data synchronization between the handheld and the PC. Palm
Computing provides the CDK (Conduit Development Kit) in
Windows and Mac versions.

When you install the Palm Desktop on your PC, an application
named HotSync is added to the system tray of your PC. When
your Palm device is connected to the cradle you installed on your
machine, and you click the synchronize button, this application is
activated and starts the data synchronization with the device using
a propriety protocol.

The HotSync application activates conduits registered with it to
perform the data synchronization. If a conduit is registered with
the HotSync application, this conduit is called using the conduit

Greater Delphi
API to do its job. All databases found on the device that have no
conduits associated with them are backed up to the PC using a
simple copy operation.

If your Palm application doesn’t need to exchange information with a
PC, you don’t need to develop a conduit for it; you can be sure that
the data will be backed up automatically every time the user performs
a HotSync operation. However, if your application is an extension of
a PC application (as most Palm applications are), you need to write a
conduit to exchange the requested information.

In a surprising move, the Palm CDK requires Microsoft’s Visual C++
5.0 or later. This is strange because the official development tool for
Palm applications is CodeWarrior, which cannot be used (at the time
this article was written) to write conduits on the PC.

When I was faced with the need to write a conduit for my application,
I decided to investigate the option of using Delphi. My research
lead me to EHAND Connect, a product offered by EHAND AB, a
company in Sweden. EHAND Connect is a COM-based product that
allows you to write conduits with every Windows development tool
that can create automation objects. The price for EHAND Connect
is free for public applications, or a small fee for internal enterprise
applications. The manual that comes with the product provides Visual
Basic samples, but it’s easy to use Delphi to create your conduits, as
we’ll see in this article.

Getting Started with Conduit Development
Before we can discuss conduit development, you should own a Palm
device, preferably one with Palm OS V3.0 or later. (The Palm IIIe
that is the entry product from 3Com when this article was written is
an example of one such device.) You should install the Palm software
on your PC, connect the cradle, and perform HotSync to ensure
that everything works. Palm Computing offers the POSE (Palm OS
Emulator) for people who want to develop without access to a real
device, but in reality, I found it much easier to work with a real Palm
device than with the POSE.

To make it easy, we’ll write a conduit for the ToDo application that
comes standard with the Palm OS, so you won’t need to write a
new Palm application, or even install one on your device. If you use
the ToDo application on your device, I would suggest performing a
HotSync before you start playing with the conduit we will write; this
will ensure that the data you need will remain intact.

EHAND Connect
EHAND Connect can be downloaded from http://www.ehand.com/
ehand/d.asp (version 1.0 was the version available when this article
was written). Unzip the distribution file and run the setup application
to add the EHAND Connect SDK to your computer.

You now need to import the EHAND Connect type library into
Delphi. I used Delphi 5’s TlibImp.exe application (available in Del-
phi’s \Bin sub-directory), and executed it with the -P+ parameter
(for Pascal output) on EHConnect.tlb, which can be found in the
EHAND Connect installation directory. Assuming you installed using
the standard directory structure, the command line looks like this:

Tlibimp -P+
 "C:\Program Files\EHand\EHand Connect\EHConnect.tlb"

The result is two files, EHConnect_TLB.pas and EHConnect_TLB.dcr,
that I moved to Delphi’s \Imports sub-directory.
8 June 2000 Delphi Informant Magazine
The Conduit Objects
When the conduit object is called by EHAND Connect, a conduit
core object is passed to our code. This object provides access to
an object model used to represent that synchronization process, and
provide access to source and destination information.

We’ll begin writing conduit code in Part II of this series. For now, let’s
inspect the different objects that our code can use.

The core conduit class. The core conduit class is the root class passed
to our code. It provides access to the conduit synchronization object
model and provides many services and access to information about
the synchronization process. This class is referenced as the interface
Icore (or Conduit) in the Delphi type library import unit.

The class properties provide information like the type of synchronization
that needs to be performed (SyncType), the type of connection (ConnType
— the device is connected via a cradle or over a modem), and more.

The class provides the methods to open and define the database we
want to synchronize with. Use OpenDatabase to open a database on
the device, and CloseDatabase to close it when you’re done with it.
You can write information to the HotSync log with AddLogEntry,
remove a database with DeleteDB, or get information about the device
using GetHHOSVersion. You can read a record (returning a data
record class) using functions such as ReadRecordByIndex,
ReadNextModifiedRec, and more. You can create new records with
GetEmptyRecord, and write a record to the database using WriteRec.
The DefineField method is used to define the structure of records
(schema) in the database (the Palm device does not include this meta
information in the database).

There are more methods and properties supported in the class, and
we’ll discuss some of them when we inspect our sample application
in Part II of this series.

The user information class. The user information class (referenced as
IComUserIDInfo or UserInfo in the Delphi type library import unit)
is used to provide information about the user of the device being
synchronized. The class provides information, such as the user id, user
name, password, time of last synchronization, etc.

The database information class. The database information class is used
to represent the global database information. The Delphi type library
import unit represents this class using the IComDBGenInfo interface,
but you can also use the name DBInfo to access the same interface.

This class provides access to global information associated with the
database, for example, the categories defined for the database or
global database fields. The methods of the object allow you to read
information or create information in this part of the database.

The data record class. The data record class is used to represent
a single record in a database. The Delphi type library import unit
represents this class using the IComRecordInfo interface.

The data record class provides information about the data record,
including the unique record identifier (RecID), the record position
in the database (RecIndex), the record’s category (CatID), the record’s
size (RecSize), the data portion size (TotalBytes), and the attributes
associated with the record (Deleted, Modified, Private, and Archived).
Use the GetField method to get the value of a field in the record, or
SetField to set the value of the field in the record.

http://www.ehand.com/ehand/d.asp
http://www.ehand.com/ehand/d.asp

Greater Delphi
The collection class. The collection class is used to store an array of
elements in one variant. It’s represented as the ICollection interface in
the Delphi type library import unit. This class provides the same kind
of functionality that a Delphi TList provides to access and set items
in a collection. The EHAND Connect Visual Basic samples use this
class to hold memory images of the records they manipulate. I chose
to use the familiar TStringList class instead.

Conclusion
The next part of this series demonstrates the use of EHAND Connect to
create a conduit in Delphi by writing a simple ToDo application that will
store information from the Palm device ToDo application to a Paradox
database. We will also write a conduit that synchronizes the Paradox
database and the Palm device. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUNE\DI200006RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer
of eAuthor Help, HyperAct’s HTML Help authoring tool. For more information
about HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910, or visit
http://www.hyperact.com.
9 June 2000 Delphi Informant Magazine

http://www.hyperact.com

10 June 2000 Delphi Informant Magazine

In Development
Threads / Delphi 2-5

By Nikolai Sklobovsky
Waking from Threadmare
An Agent-based Approach to Multi-threaded Programming

Multi-threaded programming has never been an entry-level subject. Even with the
proper wrapper classes, which modern development tools provide so generously,

creating an elegant, smoothly working multi-threaded application isn’t always an easy task.
Two major problems a novice programmer is apt
to encounter when dealing with multiple threads
are synchronization and visualization. And debugging
multiple threads can hardly be called pleasurable.
Even if your favorite IDE provides thread-debugging
support, the extremely volatile nature of threads-based
processes often prevents you from using an IDE and
makes you go back to the good old “debug print”
technique. And sometimes even this doesn’t help.

Several years ago, I reached a point where multi-
threaded programming ceased to be just a buzz-
word and became the sine qua non condition for
my projects. After having had enough painful “fun”
with my first threads, especially on multi-processor
machines, I developed a technique for dealing with
them. Since that time, neither my colleagues (who
gladly employed this technique in a variety of
projects) nor I have had a single problem with
multiple threads. Multi-threaded programming has
now become routine, bringing with it many perks,
and — if properly used — no pain. During these
years this technique has been refined, revised, and
thoroughly tested. We now have many mission-
critical applications that use it all the time.

The purpose of this article is to share this robust,
reliable, and relatively simple method with a
broad community of fellow programmers. If you’re
already familiar with the subject and have enough
multi-threaded experience under your belt, you can
jump right to the implementation section.

You’ll notice that only a few code excerpts are
included in the article’s text (the rest of the code is
available for download; see the end of the article for
details). Although the technique is non-language
specific and can be implemented in different lan-
guages in various ways, all the examples here are
written in Delphi. You can use any 32-bit version
of the compiler, although the latest version is pref-
erable. You should also be familiar with basic
Delphi and threads-related terminology.

Why on Earth Use Multiple Threads?
One of the most important questions for a devel-
oper to ask about any new technology is “Why
should I use it?” or “How would I (or my applica-
tion) benefit from it?” This question arises natu-
rally because most, if not all, of these technologies
promise a lot in some foggy future while the suf-
fering starts almost immediately. Unfortunately —
or quite fortunately for IT professionals — in pro-
gramming, as in geometry, there is no king’s way to
the bright shiny tops of today’s “cutting edge.” The
learning curve is usually very steep, which means
you must acquire tons of new information before
your application even starts working at all, let alone
produces any benefits.

The standard rule is: If your application already
works the way you want, don’t touch it. This
simple policy works pretty well until that sad
moment when you realize that you’ve already used
100 percent of your existing arsenal to make an
application work — and it still doesn’t. This is the
moment of truth. Now you’d better be familiar
with the new technology that you’re about to use.
Otherwise you might make an erroneous choice
with disastrous results.

Microsoft Windows began providing support for
multiple threads with its first 32-bit version. The
benefits were very attractive. After 16-bit, event-
driven-only cooperative multi-tasking, when any
extra millisecond in a tight loop could easily result
in a system-wide “freeze,” programmers were finally
given a nice opportunity to separate hard working
— and mostly sequential — data-crunching busi-
ness processes from relatively slow, random, unpre-
dictable event-based GUIs. It also opened a door
for smooth background processing. The only thing

In Development
it seemed you needed to do was to isolate those processes, put them
into separate threads, and voilà! You can forget about taking complex
and sophisticated measures, allowing the other parts of your applica-
tion, and the system itself, to breathe while you’re busy digging your
data. Everything became simple and straightforward, almost like in
the old DOS world. Each part was simply doing its job while the
operating system provided each with its fair share of the CPU cycles.
Simpler implementations meant fewer bugs and a shorter path to
market. Long live multiple threads!

Delphi has offered thread support starting with its first 32-bit version,
namely Delphi 2, which hit the market soon after Windows 95.
Although Delphi provided a wrapper class conveniently named TThread,
you could also choose to use bare-metal, Win32 API thread routines.
Examples and online Help articles provided some decent information on
the subject, so hundreds of programmers rushed to use — and to fight
— this fascinating innovative technology. And many were slain.

New World Order
Almost all thread-specific problems arise from a single paradigm
change: You no longer live in a synchronous world. You can no longer
assume the next line of code will be reached right after the current
one has executed. To make things worse, you can’t even assume any
given single line of your high-level Delphi code will be executed as
a whole. Instead, a thread or process switch might happen at any
moment, sometimes even during a simple assignment operation.

In the old sequential world, you could think of yourself as a mighty
lone warrior. Your errands were tough, but at least you knew your
exact position at any particular moment. Now, suddenly, you’re lead-
ing a commando squad. Although your troops still accept your com-
mands instantaneously, it takes an unpredictable amount of time for
them to be implemented. You immediately experience a certain lack
of control. Each of your troopers being properly trained for a specific
job, they can carry it out very effectively, much more effectively than
you used to do. But this also means that they no longer report their
every step, or ask your permission to move. Once they’ve accepted the
task, they disappear into the jungles of the CPU. The only way to get
them back is to wait until they’re done, or to kill them.

Under the new conditions, you need to radically revise your strat-
egy. Rather than continuing to think about the whole campaign
every moment, you have to design the campaign in advance, discuss
each part with the relevant participant, provide a reliable com-
munications link between them when joint efforts are required, and
then sit back and relax, watching their progress and making small
corrections, as needed. Sound easy? It is, provided you’ve managed
to complete your part, i.e. to design the campaign, establish the
communications, and monitor the action.

Design
Many people have recognized that multi-threaded applications typically
require much more planning than conventional single-threaded ones.
Basically, threads usage is very similar to units usage in any strategic
computer game. The overall success depends not only on the strength
and training of each unit, but also on how well the plan was designed
and thought out. The best troops can lose to the weakest enemy if not
properly deployed; the best plan can fail if the tools aren’t good enough.

The benefits and desirability of good design were generally recognized
in conventional programming. In the world of multi-threading, good
design is pure necessity. Proceeding here without good design makes
failure inevitable.
11 June 2000 Delphi Informant Magazine
Synchronization (Terminate Traps)
Communication between the deployed units and HQ (headquarters)
is required for victory. You need to know, for instance, that the bridge
ahead is secured before you advance your main forces to the river. For
multiple threads, this essential communication is called synchroniza-
tion. Unfortunately, this part of Delphi’s implementation of thread
support is unsafe and unclear.

Let’s consider the OnTerminate event. At first sight, this appears to be a
perfectly convenient way for a thread to say: “Hey, I’m done; you can
proceed safely.” Unfortunately, in real life it’s not so simple. The problem
is that this event is fired (via the Synchronize method) by default while
the thread is still alive. As a result, all you can do is set up a flag, or send
yourself an asynchronous message. You definitely cannot proceed. If you
try, your application will be caught in a deadlock, or you will encounter
some nasty, random audio/visual effects when you try to close it. Of
course, you might think you could override the virtual DoTerminate
method. This seems to be a great idea, until you start implementing it.

Another easy trap to fall into concerns the similarly named couple
Terminated /Terminate. You might think that once you’ve called the
Terminate method for a thread, that thread will terminate. You may
even be so naive as to expect it to stop working immediately. It isn’t
so. Terminate is a static procedure that simply sets the protected read-
only Terminated property to True, and that is all. Basically, Delphi
provides a programmer with a free, Boolean, thread-located variable,
and a decent way to set its value to True. All further responsibility
for checking this variable value falls to the application programmer,
making him or her insert endless conditional operators in loops, thus
obfuscating a formerly clear and simple algorithm.

As you can see, Delphi’s support for “polite” thread termination is
quite limited. Besides, if you use a native thread API rather than the
TThread object, you can’t use this support at all.

Visualization
Another important aspect of multi-threaded applications is feedback —
visual or otherwise — from the working threads. With the VCL being
officially non-thread-safe, visual feedback draws especially hot attention
from the programmers. Delphi developers have suggested a simple solu-
tion to this problem, namely the Synchronize method. This method
acquires a VCL-global critical section, effectively making the VCL thread-
safe for this particular thread for the duration of each call. You can think
of this as two highways that merge at some point, run together for a while,
then finally part and go their separate ways until the next merge.

This simple solution works surprisingly well until you decide to
check for your end-user reaction during this synchronize-based call.
Suddenly, your calling (working) thread stops and waits with you.
Quite often this is exactly the opposite of your intentions. You had
hoped the thread would work steadily regardless of innocent end-user
actions. And even if you didn’t launch any message boxes, simply
moving the mouse (and what else is a poor user supposed to do while
looking at your progress bar but play with the mouse?) can slow your
“synchronized” application manifold, thus immediately eliminating
one of threading’s most important benefits: performance.

Another problem may also arise if, for some reason, you decide
not to use TThread object, and switch to native Win32 API calls
instead. You’ve already lost the Terminate group, and now there’s no
Synchronize method for you either. This is unfair! You didn’t say you
weren’t going to use the VCL at all; you just didn’t want to use its
poorly developed thread support.

In Development

function Start(const csCaption: string;
 bProgressable: Boolean = False;
 pUserData: Pointer = nil): Integer;
// Always accepted if pid is okay.
procedure Finish(pid: Integer = pidCurrent);

procedure Report(const csText: string = ‘’;
 bImportant: Boolean = False;
 pid: Integer = pidCurrent); overload;
procedure Report(Index, Count: Integer;
 const csText: string = ‘’;
 pid: Integer = pidCurrent); overload;
// Always accepted if pid is okay.
procedure ReportAlways(const csText: string;
 ErrorClass: ExceptClass = nil;
 pid: Integer = pidCurrent);

Figure 1: The public portion of our field agent, named Client.

procedure DoTheJob;
var
 i, iCount: Integer;
begin
 iCount := 10000;
 for i := 0 to Pred(iCount) do begin
 DoSomething(i);
 end;
 DoSomethingElse;
end;

Figure 2: If the working method of the original business process
looks like this ...

procedure DoTheJob(Client: TOurCustomFieldAgent);
var
 i, iCount: Integer;
begin
 Client.Start(‘Doing something’, True);
 try
 iCount := 10000;
 for i := 0 to Pred(iCount) do begin
 Client.Report(i, iCount);
 DoSomething(i);
 end;
 Client.Report(‘Doing something else’, True);
 DoSomethingElse;
 finally
 Client.Finish;
 end;
end;

Figure 3: ... then our agent-aware version would look like this.
A Way Out
A cure for these problems can be found when you realize that
your multi-threaded designs have a lot in common. Let’s consider
the simplest case: a two-level multi-threaded application. The main
thread, which always exists, will be responsible for the GUI and user
interaction. One or more secondary threads will perform some useful
data-processing work, such as sorting thousands of rows, or copying
multi-megabyte files.

At this point, the design seems to be solid, leaving us with only two
things remaining to be worked out: communication (synchroniza-
tion) and feedback (visualization). We would like for each thread’s
progress to be smoothly displayed with its own labeled progress
bar, and for each thread to have a humble Cancel button in case
something goes wrong. By “smooth display” of the thread’s progress,
we mean that a working thread should be free to inform its host
about its status whenever it’s most suitable for the thread, not neces-
sarily for the host. At the same time, we also expect the host to report
the current status in a uniform way (e.g. two times per second)
regardless of the thread’s ability to speak. Implementing a Cancel
button means that any secondary thread — TThread based or not
— can be easily and almost instantly terminated at any moment.
“Almost” is good enough (a thread may need some time for closing
files, releasing resources, etc.) provided our user can have immediate
feedback that the thread has accepted the command and is carrying
it out as soon as possible.

We also want all our secondary threads to terminate peacefully if
the user decides to close the application, or shut down the whole
system. And, of course, we would like to have a chance to get rid
of all the thread-associated GUI components once the corresponding
thread has finished its job. It goes without saying that, during all this
data processing, your main window should remain as sensitive to user
action as if it were doing nothing else.

In other words, we want our working secondary thread to be free to
do its primary job, and to diligently report its progress without any
severe loss of performance. At the same time, we want our primary
GUI thread to be able to display this information, and have ultimate
control over the working thread’s life and death. This means a certain
amount of work needs to be done by somebody to accomplish our
wishes. We need an agent.

Implementation
Actually, we need two agents. One agent should be available to the
working processes. It needs to be small and simple and, theoretically
speaking, could even be absent altogether. Our troopers cannot carry
a home theater on a mission. Likewise, they certainly should not slow
down if their radio goes dead. On the contrary, they should simply
throw the whole set away and move faster.

The other agent must be more bulky. It will be a command center or
central headquarters (HQ). It should take care of all incoming signals
from multiple field devices (which may reside in different threads),
serialize them, and provide a convenient way for the GUI to retrieve
this valuable information.

Field Agent
The primary roles of the field agent are to provide a working thread
with an easy way to inform HQ about its progress, and to allow HQ
to send it a self-destruction signal, if necessary. This agent should
be very lightweight, and its absence should not prevent a working
thread from doing its job.
12 June 2000 Delphi Informant Magazine
That last part may sound tricky to a novice Delphi developer, but
there’s a simple solution for this kind of problem. Delphi itself uses
it in the ubiquitous Free method. The only thing you must do is
ensure that all the methods you are about to publish are static (i.e. not
virtual nor dynamic) and that the first statement of all these methods
looks like this:

if Self = nil then
 Exit;

Simple enough! Now we can develop our business algorithms without
bothering to check whether our agent is present. Its code will handle
a nil situation automatically. The public portion of our field agent
— let’s name it Client — is shown in Figure 1. See also Listing One
(on page 14).

Here, the Start and Finish methods serve to denote the entry and exit
points of some logical process, while the Report methods obviously do

In Development
a humble servant’s job in providing HQ with valuable progress data.
Thus, if the working method of the original business process looks
like the code in Figure 2, then our agent-aware version would look
like that in Figure 3.

Fair enough. If this thing really works this way, you could possibly
buy it. At this point you might have a couple of questions, such
as why do we need to insert a try..finally statement? And what are
those suspicious comments about “acceptance” all about? Finally, how
are we supposed to terminate this process in case we need to? We’ll
answer these and other questions in the next section.

How It Works
Now it’s time to raise the curtain, or, should I say, the “exception”?
Our agents use this powerful technique to maximize both the robust-
ness and the safety of the application. The idea is simple. The busi-
ness process doesn’t monitor our agent; it simply calls its methods.
However, it must be prepared for an agent to raise an exception
in response to one of these calls. This, in turn, would result in
immediate quitting from all the loops and call stacks, through all the
except and finally parts. Thus, we can solve both problems by having
the thread use the same line to both report its status and receive an
“abort” feedback via exception.

Exceptions are very powerful. This means they shouldn’t be abused.
Our agents are smart enough not to raise an exception in response to a
Finish method, or to a special method named ReportAlways. Sometimes
you need to send some information to HQ even when you know the
mission has been aborted, such as when you know who the mole is.

Let’s briefly scan over other features of our Client before we switch to
its more complicated HQ partner.

Start and Finish
Each time you’re about to start some logically related group of
actions, it’s wise to give this group a human-readable name, and
call the Start method for the available Client. If you know this
action can theoretically be associated with some progress-bar-like UI
component, you can set its second argument to True. This will give
you an opportunity to conveniently report on its progress.

The Start method always returns an Integer: a Process ID or
PID. Note that this is not a Windows process ID, but rather
our own logical ID, which we can use to identify each of our
actions. In the vast majority of cases, you can simply ignore it; all
other methods by default accept the so-called current ID, which
is supported by HQ on your behalf. This current ID is defined by
a constant named pidCurrent. Think of PID as a radio frequency.
You generally don’t need to know its exact value to be able to
say a few words. If you want ultimate control, however, it exists
for that purpose.

There is another special ID available. If you don’t feel like using the
Start/Finish pair, but still need to report something, you can use any of
the Report methods with a constant, pidMain. This process always exists
and everybody is aware of its presence. You can treat it as a common
open frequency. Finish will never raise an exception (except for the weird
case when you try to finish a process with an unknown ID).

Reports
Client allows us to send three kinds of reports back to HQ. First,
and most commonly used, is a text report. This text information can
be either important or unimportant. Importance guarantees delivery.
13 June 2000 Delphi Informant Magazine
Imagine a situation where you’re scanning several drives. You would
probably want to notify the end user about each drive, which could
be conveniently handled within the time required to scan each one.
However, it wouldn’t be important to display all the file names.
Important messages are queued and eventually delivered. All unim-
portant ones use a single storage place, each new message thus
overwriting the previous one.

A special kind of report is a progress report. If you declared your
process to be “progressable,” you can report its progress in a very
convenient way. Naturally, this kind of report is treated
as unimportant.

Last, but not least, is the ReportAlways method. Like Finish, it doesn’t
raise an exception, even if the process or the whole mission has been
cancelled. You can use it to send some “famous last words.” Its usual
place is in the except clause of the thread’s Execute method.

At Headquarters
This part of our work is essentially more complex. HQ is respon-
sible for all its field agents. It should provide radio channels (IDs),
separate important information from the unimportant, inform the
GUI, and solve many other problems “just to keep things moving.”
Here’s how it works.

We have a class (component) that usually resides in a main applica-
tion thread. Let’s name it Log. Internally it creates a critical section.
When initialized, it creates an upper-level “activity process” with
pidMain. All secondary “activity processes” are created during Start
calls. For each process, there is a queue for important messages, as
well as some other data slots, e.g. time of start, current progress, error
status, etc. Log also starts an internal timer. This timer defines how
often the GUI will be notified about new information.

Whenever a working thread calls one of the client’s methods, the
client acquires Log’s critical section and performs all the actions
needed. This guarantees data consistency. These notifications are very
fast. Hence they don’t affect overall performance, and the threads
usually don’t have to wait for each other.

When Log’s timer ticks, it first checks whether there was any new
data since the last tick. If there was, Log generates a series of
events. Here is the list, which is defined in Listing Two (beginning
on page 14):
§ property OnDataUpdateStart: TActivityProcessLogEvent
§ property OnDataUpdateFinish: TActivityProcessLogEvent
§ property OnProcessStart: TActivityProcessEvent
§ property OnProcessUpdate: TActivityProcessEvent
§ property OnProcessFinish: TActivityProcessEvent

First, Log generates an OnDataUpdateStart event to signal “got some
data, be ready.” Then it sends process-specific events for each activity
process available. Lastly, it sends OnDataUpdateFinish, thus inform-
ing us that there is no more new information at the moment. Event
handlers can retrieve the information via several of Log’s methods, all
of which use the same critical section and are quite fast. This way, the
GUI doesn’t wait for its secondary threads, and the threads don’t have
to wait for a slow GUI, or for each other.

Here are some other events you may find useful:
§ property OnInitialize: TActivityProcessLogEvent
§ property OnFinalize: TActivityProcessLogEvent
§ property OnIdle: TActivityProcessLogEvent

Figure 4: A program demonstrating all of the techniques dis-
cussed in this article is available for download.

In Development
The first two are fired when Log is initialized/finalized. OnIdle occurs
when no new information has been received between two consecu-
tive timer ticks.

No More Synchronize/OnTerminate
As you can well guess, there is no need to use Synchronize anymore.
Anything you do inside Log’s event handler is perfectly thread-safe.
Log takes care of it for you. There is also no need to use an
OnTerminate event. Whenever Log detects that a thread’s master
activity process has finished, it waits until the thread is actually
terminated (via the WaitForSingleObject API call) before firing an
OnProcessFinish event.

A fully-functional program demonstrating these techniques accompa-
nies this article (see Figure 4). It’s available for download; see end of
article for details.

Conclusion
This suggested approach provides an easy-to-use way for multi-threaded
programming. All you need to do is transfer the data-processing algo-
rithms into secondary threads, supply them with the Log’s client, and
then drop the Log component into your progress dialog form and hook
up a few event handlers. Happy multi-threading! ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUNE\DI200006NS.

Nikolai Sklobovsky is a senior system analyst for Retail Technologies International,
house of RetailPro (http://www.retailpro.com), one of the world’s best POS sys-
tems, where he developed a sophisticated, yet easy-to-use, DSS (Decision Support
System) for OLAP analysis of merchant data. He has over 10 years of experience in
applied mathematics and teaching at the university level, as well as over 10 years
of experience in IT. You can contact Nik at delphi@sklobovsky.com or at his Web
site at http://www.sklobovsky.com.
Begin Listing One — Client field agent
const
 pidMain = 0; // Internal main process, always exists.
 pidCurrent = -1; // Current process.
 // All other negative process ids are invalid.
14 June 2000 Delphi Informant Magazine
 pidInvalid = -2;

 cbNoProgress = False;
 cbProgress = True;
 cbUnimportant = False;
 cbImportant = True;
 cbNotJournalOnly = False;
 cbJournalOnly = True;

type
 EActivityProcessLogError = class(Exception) end;
 EActivityProcessLogAbort =
 class(EActivityProcessLogError) end;
 EActivityProcessLogUserCancel =
 class(EActivityProcessLogAbort) end;

 TActivityProcessStat = (
 apsNewData, // Something has been changed.
 apsBrandNew, // Process has just been created.
 apsFinished, // Process terminated.
 apsError, // Some (external) error occurred.
 apsAborted, // Process was stopped (programmatically)
 // for some reason.
 apsCancelled // Process was stopped because of user.
); // TActivityProcessStat.

 TActivityProcessStatus = set of TActivityProcessStat;
 TActivityProcessError = apsError..apsCancelled;
 TActivityProcessErrors = set of TActivityProcessError;

 TCustomActivityLogClient = class(TObject)
 public
 // Working process side.
 function Start(const csCaption: string;
 bProgressable: Boolean = False;
 pUserData: Pointer = nil): Integer; register;
 // Always accepted if pid is ok.
 procedure Finish(pid: Integer = pidCurrent); register;
 procedure Report(const csText: string = ‘’;
 bImportant: Boolean = False;
 pid: Integer = pidCurrent); overload; register;
 procedure Report(Index, Count: Integer;
 const csText: string = ‘’;
 pid: Integer = pidCurrent); overload; register;
 procedure Journal(strsText: TStrings;
 pid: Integer = pidCurrent); overload; register;
 procedure Journal(const csText: string = ‘’;
 pid: Integer = pidCurrent); overload; register;
 // Important message.
 procedure Notify(const csText: string;
 pid: Integer = pidCurrent); register;
 // Always accepted if pid is ok.
 procedure ReportAlways(const csText: string;
 ErrorClass: ExceptClass = nil;
 pid: Integer = pidCurrent); register;
 end; // TCustomActivityLogClient.

End Listing One
Begin Listing Two — TActivityProcess
const
 // Standard timer frequency (1/2 sec).
 ciDefaulLogFrequency = 500;

 cbNextInLine = False;
 cbLastOnly = True;
 cbImportantOnly = False;
 cbIncludeUnimportant = True;
 cbAppendToOldLog = False;
 cbOverwriteOldLog = True;

type
 TActivityProcess = class;
 TActivityProcessLog = class;

 TTimeReportMode = (
 trmDateTime, // Timestamp of absolute date and time.

http://www.retailpro.com
http://www.sklobovsky.com

In Development
 trmTime, // Timestamp of relative time.
 trmNone // No timestamp.
); // TTimeReportMode.

 TActivityMessage = record
 ID: Integer;
 Indent: Integer;
 TimeStamp: TDateTime;
 JournalOnly: Boolean;
 Error: ExceptClass;
 end; // TActivityMessage.
 TPActivityMessage = ^TActivityMessage;

 TActivityProcessEvent =
 procedure (Sender: TActivityProcess) of object;
 TActivityProcessLogEvent =
 procedure (Sender: TActivityProcessLog) of object;

 TActivityProcess = class
 public
 destructor Destroy; override;
 // Reading info (client area) - sequential access.
 // False means no new data available.
 function GetMessage(var Text: string;
 bIncludeUnimportant: Boolean = cbIncludeUnimportant;
 bLastOneOnly: Boolean = cbLastOnly;
 pMsg: TPActivityMessage = nil): Boolean;
 // Unimportant messages buffer.
 function GetText: string;
 // Random access methods - are not used - deleted.
 // aborting methods.
 procedure Terminate(
 Reason: TActivityProcessError = apsAborted;
 const csErrorText: string = ‘’;
 ErrorClass: ExceptClass = nil);
 procedure Abort(const csText: string = ‘’);
 procedure Cancel(const csText: string = ‘’);
 // Properties.
 property Caption: string read FCaption;
 property Progressable: Boolean read FProgressable;
 property pUserData: Pointer read FUserData;
 property Log: TActivityProcessLog read FLog;
 property Parent: TActivityProcess read FParent;
 // Original thread ID which created this process.
 property ThreadID: THandle read FThreadID;
 property ID: Integer read FID;
 // Internally assigned ID - unique within one Log’s
 // Init-Done session.
 property TimeStart: TDateTime read FTimeStart;
 // Initially TimeStart.
 property LastUpdate: TDateTime read GetLastUpdate;
 // Initially zero.
 property TimeFinish: TDateTime read GetTimeFinish;
 // 0 is the top-most.
 property Level: Integer read FLevel;
 // If this is a main process in this thread.
 property Master: Boolean read FMaster;
 property Status: TActivityProcessStatus read GetStatus;
 property Position: Integer read GetPosition;
 property Max: Integer read GetMax;
 property KidsCount: Integer read GetKidsCount;
 property Kids[Index: Integer]: TActivityProcess
 read GetKids;
 // Read write.
 property Tag: Integer read GetTag write SetTag;
 end; // TActivityProcess

 TActivityProcessLog = class(TComponent)
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 // Actual methods.
 procedure Initialize;
 // Asynchronous call - use OnFinalize event.
 procedure Finalize;
 function WaitForAllThreads: Cardinal;
 // Ref-counted.
 procedure StartFiling(bOverwrite: Boolean = True);
 procedure StopFiling; // Ref-counted.
15 June 2000 Delphi Informant Magazine
 procedure GetJournal(strs: TStrings;
 ReportErrors: TActivityProcessErrors =
 [apsCancelled]); // Termination.
 procedure Kill(pid: Integer = pidCurrent;
 Reason: TActivityProcessError = apsAborted;
 const csErrorText: string = ‘’;
 ErrorClass: ExceptClass = nil); register;
 procedure Abort(const csText: string = ‘’);
 procedure Cancel(const csText: string = ‘’);
 // Properties.
 property Client: TCustomActivityLogClient read FClient;
 property Journal: TStrings
 read FJournal write SetJournal;
 property TimeStart: TDateTime read FTimeStart;
 property LastUpdate: TDateTime read GetLastUpdate;
 property TimeFinish: TDateTime read GetTimeFinish;
 // Timer is ticking.
 property Active: Boolean read GetActive;
 property ErrorStatus: TActivityProcessErrors
 read GetErrorStatus;
 property ThreadsCount: Integer read GetThreadsCount;
 property ActiveCount: Integer read GetActiveCount;
 property ProcessCount: Integer read GetProcessCount;
 property Process[Index: Integer]: TActivityProcess
 read GetProcess; default;
 published
 property AutoFinalize: Boolean read FAutoFinalize
 write SetAutoFinalize default True;
 property AutoJournal: Boolean read FAutoJournal
 write SetAutoJournal default True;
 property AutoJournalErrors: TActivityProcessErrors
 read FAutoJournalErrors write SetAutoJournalErrors
 default [apsCancelled];
 property AutoFiling: Boolean read FAutoFiling
 write SetAutoFiling default True;
 property Frequency: Cardinal read GetFrequency
 write SetFrequency default ciDefaulLogFrequency;
 property TimeReportMode: TTimeReportMode
 read FTimeReportMode write SetTimeReportMode
 default trmDateTime;
 property EnumKidsFirst: Boolean read FEnumKidsFirst
 write SetEnumKidsFirst default False;
 property UseEllipsis: Boolean read FUseEllipsis
 write SetUseEllipsis default False;
 // Call Application.ProcessMessages or not.
 property UsePumping: Boolean read FUsePumping
 write SetUsePumping default False;
 property FileName: string read FFileName
 write SetFileName;
 // Event handlers.
 property OnInitialize: TActivityProcessLogEvent
 read FOnInitialize write SetOnInitialize;
 property OnFinalize: TActivityProcessLogEvent
 read FOnFinalize write SetOnFinalize;
 property OnIdle: TActivityProcessLogEvent
 read FOnIdle write SetOnIdle;
 property OnDataUpdateStart: TActivityProcessLogEvent
 read FOnDataUpdateStart write SetOnDataUpdateStart;
 property OnDataUpdateFinish: TActivityProcessLogEvent
 read FOnDataUpdateFinish write SetOnDataUpdateFinish;
 property OnProcessStart: TActivityProcessEvent
 read FOnProcessStart write SetOnProcessStart;
 property OnProcessUpdate: TActivityProcessEvent
 read FOnProcessUpdate write SetOnProcessUpdate;
 property OnProcessFinish: TActivityProcessEvent
 read FOnProcessFinish write SetOnProcessFinish;
 end; // TActivityProcessLog.

End Listing Two

16 June 2000 Delphi Informant Magazine

On Language
TMethod / Event Properties / Pointers / Delphi 4, 5

By Jeremy Merrill

var
 pInt: ^Intege
 ptr: Pointer;
 x: Integer;
 obj: TObject;
begin
 x := 10;
 // The @ oper
 // i.e. a poi
 pInt := @x;
 // The ^ oper
 // i.e. it de
 pInt^ := pInt

 ptr := @x;
 Integer(ptr^)

 obj := TObjec
 obj.Free;
end;

Figure 1: Pointe
Manipulating Events
Manipulating Event Properties Using TMethod

To understand how to manipulate event properties using TMethod, you must under-
stand some pointer basics. As its name implies, a pointer is a variable that points

to something else. It does this by holding the memory address of what it is pointing to.
A pointer is, therefore, simply a memory address, and can reference a variable, object,
procedure, or anything else that occupies memory.
We use pointers in Delphi all the time; we just
don’t think of them as pointers. When we define
an object variable like Form1, for example, what
we’re really doing is defining a pointer to an
area of memory that holds a TForm1 object. The
Form1 variable by itself is useless, until we create
the actual form that it points to. Figure 1 is an
example of pointers in action.

While this isn’t exactly useful code, it does illustrate
the use of pointers. The declaration:

pInt: ^Integer;

defines pInt as a pointer to an integer. We assign
pInt the memory address of x using the @ operator,
and we can dereference what pInt is pointing to
using the pInt^ syntax (where the ^ operator fol-
lows the pointer variable).
r; // Declare Integer pointer.
 // Declare generic pointer.

 // Declare object pointer.

ator returns the address of a variable,
nter to the variable.

ator returns the value stored at an address
references the pointer.
^ + 2; // x = 12

 := Integer(ptr^) + 2; // x = 14

t.Create;

rs in action.
The ptr variable works the same way. The differ-
ence is that ptr is defined as a generic pointer,
so we must typecast it in order to tell Delphi
what it’s referencing. The obj variable works the
same way as well. The TObject.Create constructor
returns the memory address of the newly created
object. We reference the Free method indirectly,
through the obj pointer. Fortunately, Delphi has
removed the need to use ^ and @ operators when
using object pointers.

Events and TMethod
Now let’s look at the variables that point to
methods. A method is a procedure or function
that is part of an object. On the Events tab of
the Object Inspector, when we select a control’s
OnMouseDown event and press 1 for help, we
get the following type information:

type TMouseEvent = procedure (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState;
 X, Y: Integer) of object;
property OnMouseDown: TMouseEvent;

This tells us three things, the most obvious being
the arguments the OnMouseDown event handler
expects. It also tells us that the event is a property.
The only reason it shows up on the Events tab
instead of the Properties tab is because the Object
Inspector is smart enough to figure out which
properties are events.

The third thing this tells us is that the value this
property holds references a method. We know
that it references a method, and not just a stand-
alone procedure, because of the last two words
of the TMouseEvent type declaration: of object.
This is an important distinction. A single pointer
can reference a procedure or function, but it

On Language
takes two pointers to reference a method. All method variables
follow the same structure as the basic TMethod type, defined in the
SysUtils unit as follows:

TMethod = record
 Code, Data: Pointer;
end;

Therefore, all method variables, including all event properties,
can be typecast as TMethod. When we reference the Code pointer
of a method property, we’re pointing to the object’s procedure
or function. Data points to the instance of the object, and is
used to populate the Self pointer that’s built into all methods.
Therefore, when we point the OnMouseDown event property
to an appropriate method, we not only specify the routine to
call, but also the object (commonly a form) that owns the routine.

Why do we care? Because when we typecast a method variable as a
TMethod, we can do some rather interesting things, as we’ll see.

Calling Methods by Name
The first use for TMethod we’ll look at is its ability to execute
a method using its string name. This is accomplished by using a
function of TObject named MethodAddress. Delphi uses
MethodAddress to convert the method name of an event handler
(defined in the .dfm file of a form) into the method pointers
assigned to an event property.

To use it, we need to remember that the methods found by
MethodAddress must be published, not just public (only published
methods have their names stored in the object definition). Figure 2
shows an example of how to call methods by name.

In Figure 2, we’re storing the values of the method names, such as
RateCalculation03011998 or RateCalculation09151999, as
ComboBox1 items. The method name could just as easily have
come from a database, parameter, or any other string source
(perhaps even a method-name generation routine). Whatever the
source, the method’s address can be found by using
MethodAddress. If no such published method exists, a warning
message is generated. The actual method call to whatever routine
was chosen occurs when the Rate variable is assigned the result of
the CalcRate function.

Retrieving the Object from the Event Property
In my article “Modifying VCL Behavior” (see the February, 2000
issue of Delphi Informant Magazine), I wrote about dynamically
modifying the VCL. That article included the source code for
a TLinkedLabel component, which redirected the WindowProc
event property of another control, named Associate. While not
mentioned in that article, TLinkedLabel has a few problems. If
you link two or more LinkedLabels to the same Associate, then
remove one or more of the LinkedLabels, it’s possible to end up
with invalid pointers. Here’s one possible sequence of events that
illustrates this problem:
1) LinkedLabel1 links to the Associate. This sets

LinkedLabel1.FOldWinProc to Associate.WindowProc, and
Associate.WindowProc to LinkedLabel1.NewWinProc.

2) LinkedLabel2 links to the Associate. This sets
LinkedLabel2.FOldWinProc to Associate.WindowProc and
Associate.WindowProc to LinkedLabel2.NewWinProc. However,
because of step 1, Associate.WindowProc was already redirected,
so LinkedLabel2.FOldWinProc now points to
17 June 2000 Delphi Informant Magazine
LinkedLabel1.NewWinProc. Note that linking multiple Linked-
Labels to the same Associate does not cause a problem in and of
itself, because the WindowProc routines simply chain together.

3) LinkedLabel1 gets deleted. This causes LinkedLabel1 to set
Associate.WindowProc to LinkedLabel1.FOldWinProc prior to
deletion. While this sets Associate.WindowProc back to its original
WindowProc method, the link between LinkedLabel2 and Associate
is now broken.

4) LinkedLabel2 gets deleted. This causes LinkedLabel2 to set
Associate.WindowProc to LinkedLabel2.FOldWinProc. How-
ever, as we saw in step 2, LinkedLabel2.FOldWinProc
points to LinkedLabel1.NewWindowProc. Therefore,
Associate.WindowProc now points to LinkedLabel1.NewWindowProc.
Because LinkedLabel1 has been deleted, Associate.WindowProc
now points to a non-existent object, resulting in probable
access violations.

How does TMethod help us resolve this problem? By allowing us
to interrogate the Associate to determine if it’s already linked to
another object. The following is one possible solution that simply
type
 TRateFunc = function: Double of object;

 TCalcRoutines = class(TObject)
 private
 FCalcRate: TRateFunc;
 public
 property CalcRate: TRateFunc
 read FCalcRate write FCalcRate;
 published
 function RateCalculation03011998: Double;
 function RateCalculation06151998: Double;
 function RateCalculation01011999: Double;
 function RateCalculation04011999: Double;
 function RateCalculation09151999: Double;
 end;

var
 CalcRoutines: TCalcRoutines;

implementation

procedure TForm1.ComboBox1Change(Sender: TObject);
var
 rc: TMethod;
 Rate: Double;
begin
 rc.Code := CalcRoutines.MethodAddress(ComboBox1.Text);
 if (not Assigned(rc.Code)) then
 ShowMessage('Invalid Rate Calculation Requested.')
 else
 begin
 rc.Data := CalcRoutines;
 CalcRoutines.CalcRate := TRateFunc(rc);
 ...
 // Selected method is executed.
 Rate := CalcRoutines.CalcRate;
 ...
 end;
end;

...

initialization
 CalcRoutines := TCalcRoutines.Create;

finalization
 CalcRoutines.Free;

end.

Figure 2: Calling methods by name.

On Language
prevents a LinkedLabel from linking to an associate control, if
that associate is already linked to a different object:

procedure TLinkedLabel.SetAssociate(Value: TControl);
begin
 if (Value <> FAssociate) then
 begin
 if ((Assigned(Value)) and
 (TMethod(Value.WindowProc).Data <> Value)) then
 Exit;
 if (Assigned(FAssociate)) then
 FAssociate.WindowProc := FOldWinProc;
 FAssociate := Value;
 ...

The if ((Assigned(Value)) statement, and adding SysUtils to the uses
statement, are the only things we need to add to TLinkedLabel to get
this to work. Another possible approach could be to make the Linked-
Labels aware of each other and cleanly handle chaining. Although this
is a more complicated solution (the details of which I will defer to
the reader), this could be done by referencing the existing LinkedLabel
through the Data pointer, as we did in the previous example.

Using Data/Self as a Hidden Parameter
Another possible use of TMethod typecasting is to use the Data pointer,
and Self, as hidden parameters. An example is shown in Figure 3.

First, let’s look at FormCreate. Notice that when we set Code to the
address of TestProc, we must reference TestProc by its class. This
isolates the procedure from any object, and allows the @ operator
to return a single memory address (using @TestProc instead of
@TForm1.TestProc will result in a compile-time error). The next
line of code may look a little strange. This takes advantage of the
fact that pointers and integers both use four bytes of memory. By
typecasting an integer as a pointer, we can store the integer value
in a pointer variable. This same approach can be used to reference
objects in Tag properties, store integer values in TStrings.Objects,
and so on.

When Button1 is pressed, TestProc will be executed, but the Self
pointer within TestProc will hold the integer value of 123 instead
of referencing Form1. To retrieve the value stored in Self, we simply
typecast it as an integer. We set Button1’s caption to 123 in the
18 June 2000 Delphi Informant Magazine

procedure TForm1.FormCreate(Sender: TObject);
var
 tmp: TNotifyEvent;
begin
 TMethod(tmp).Code := @TForm1.TestProc;
 // Store the integer value 123 in Data.
 TMethod(tmp).Data := Pointer(123);
 Button1.OnClick := tmp;
end;

procedure TForm1.TestProc(Sender: TObject);
var
 i: Integer;
begin
 i := Integer(Self); // i = 123
 // Set button caption to 123.
 TButton(Sender).Caption := IntToStr(i);
 // Set Self to Form1.
 Self := (GetParentForm(Sender as TControl) as TForm1);
 // Set Form1.Caption to 'Parent Form'.
 Caption := 'Parent Form';
end;

Figure 3: Using the Data pointer, and Self, as hidden parameters.
second line to demonstrate that the integer value was actually passed
and retrieved. Also notice that Self can be reassigned, just as any
other variable. Here we reset Self to Button1’s parent form, Form1,
by using Delphi’s GetParentForm function, which takes a TControl
parameter. This step is important, because the last line of TestProc
relies on Self being set correctly.

The important thing to understand when using this technique is that it
can be potentially dangerous if done incorrectly. Remember that Self is
assumed at compile time to be a TForm1 object. The compiler doesn’t
know when Self points to something else. If we had not reset Self
to Form1 in the previous example, the code would have tried to set
TForm1(123).Caption to Parent Form, which would result in an access
violation. To safely use this technique, therefore, you need to reset Self
before any references to the parent object’s fields, properties, or methods.

Using a Stand-alone Procedure as an Event Handler
TMethod allows us to set the Code portion of an event property to
the address of a stand-alone procedure. If you’ve ever wanted to use a
procedure as an event handler, Figure 4 shows you how.

While this works essentially the same way as the code in the previous
section, assigning the address of the procedure to the Code pointer,
there is one very important distinction. Notice in Figure 4 that
the Evnt local variable of FormCreate is defined as a TNotifyEvent.
This makes it type compatible with an OnClick event property.
TNotifyEvent is defined as:

TNotifyEvent = procedure (Sender: TObject) of object;

TNotifyEvent has only one parameter, Sender, but the BtnClick pro-
cedure has two parameters, Data and Sender. Evnt and BtnClick
are actually type compatible. How? Because Evnt is a method, and
BtnClick is a stand-alone procedure. When we call a method, Delphi
passes whatever is defined in the Data pointer as a hidden parameter.
The assembled code for a method automatically reads this hidden
parameter and assigns Self to it. The assembled code for a stand-alone
procedure, however, doesn’t know anything about a hidden param-
eter, so we have to insert it at the beginning of the parameter list.

In the example shown in Figure 3, pressing Button1 will bring up
the message “Data Empty,” while pressing Button2 will display “Data
Found.” Both buttons will change their captions to “Clicked” after
the message has been displayed.
procedure BtnClick(Data: Pointer; Sender: TObject);
begin
 if (Assigned(Data)) then
 ShowMessage('Data Found')
 else
 ShowMessage('Data Empty');
 if (Sender is TButton) then
 (Sender as TButton).Caption := 'Clicked';
end;

procedure TForm1.FormCreate(Sender: TObject);
var
 Evnt: TNotifyEvent;
begin
 TMethod(Evnt).Code := @BtnClick;
 TMethod(Evnt).Data := nil;
 Button1.OnClick := Evnt;
 TMethod(Evnt).Data := Button2;
 Button2.OnClick := Evnt;
end;

Figure 4: Using a procedure as an event handler.

On Language
TNotifyList
Now we’re going to create a new class, named TNotifyList, that acts like
a TList for procedures and methods, as shown in Listing One (beginning
on page 19). While this class demonstrates many of the techniques
we’ve already discussed, I’m including it here to provide another practi-
cal example of how manipulating method pointers can add additional
power and flexibility to your applications. The main purpose of this class
is to create lists of events that can be modified on the fly, and to call
all the events in any given list with a single method call. Because the
purpose of this class is one of notification, we’ll restrict the procedures
and methods to those matching the TNotifyEvent structure.

The first thing you’ll notice when looking at the TNotifyList class is
that we use two TList objects to hold the list of methods — one to
hold the Code pointers, and the other to hold the Data pointers. By
keeping these two lists “in sync,” we can combine the Code and Data
pointers from the two lists to form a single method pointer.

Another important feature of TNotifyList is that it can contain meth-
ods and procedures. Notice the declaration of TNotifyProc near the top
of the unit. Although similar to TNotifyEvent it’s missing the of object
syntax that distinguishes methods from procedures. By using method
overloading (introduced in Delphi 4), we can add, remove, and refer-
ence entries using the same commands, whether they are procedures
or methods. Internally, we simply distinguish between methods and
procedures by checking to see if the Data pointer is nil.

One point that merits attention is the apparent duplication of
code in the class definition. While most of the overloaded methods
are similar, the Remove methods appear to be identical. They are,
however, different in two respects: The passed parameter is a
TNotifyEvent in one method and a TNotifyProc in the other
method. This causes the second difference in the two routines
in that the calls to IndexOf are referencing different overloaded
methods. Because Delphi resolves overloaded calls at compile time
by looking at parameter types, two separate Remove methods are
required by the compiler. We should also mention possible uses
of a TNotifyList object. If you have a large application, you may
have many places in the code that need to know when particular
application-wide events occur, perhaps a change in status or mode,
or a configuration setting. Having a single event handler that tries
to notify everything that cares about the change can be a daunting
task, especially if some of those notifications are dependent on
whether objects or forms have been created or not. By using a
TNotifyList, you can shift the burden from the event handler to
the individual forms, objects, and other code that care about the
event. An object’s constructor can add its own notification method
to the list, and remove it when the object is destroyed. All the event
handler needs to do is call the NotifyList’s Notify event to call all
the associated methods and procedures.

Conclusion
Manipulating method properties by typecasting them as a TMethod
can provide interesting capabilities, and increased power and flex-
ibility to an application. It can also help resolve difficult program-
ming problems. The TNotifyList class, in particular, can help resolve
many event synchronization issues. I’m sure there are many more uses
of these techniques than I have presented. Hopefully, you will find
these techniques useful. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUNE\DI200006JM.
19 June 2000 Delphi Informant Magazine
Jeremy Merrill is an EDS contractor in a partnership contract with the Veteran’s Health
Administration. He is a member of the VA’s Computerized Patient Record System
development team, located in the Salt Lake City Chief Information Officer’s Field Office.
Begin Listing One — TNotifyList
unit NotifyList;

interface

uses
 SysUtils, Classes;

type
 TNotifyProc = procedure(Sender: TObject);

 TNotifyList = class(TObject)
 private
 FCode: TList;
 FData: TList;
 protected
 function GetIsProc(index: Integer): Boolean;
 function GetMethods(index: Integer): TNotifyEvent;
 function GetProcs(index: Integer): TNotifyProc;
 procedure SetMethods(index: Integer;
 const Value: TNotifyEvent);
 procedure SetProcs(index: Integer;
 const Value: TNotifyProc);
 public
 constructor Create;
 destructor Destroy; override;
 procedure Add(const NotifyProc: TNotifyEvent);
 overload;
 procedure Add(const NotifyProc: TNotifyProc); overload;
 procedure Clear;
 function Count: Integer;
 procedure Delete(index: Integer);
 function IndexOf(const NotifyProc: TNotifyEvent):
 Integer; overload;
 function IndexOf(const NotifyProc: TNotifyProc):
 Integer; overload;
 procedure Notify(Sender: TObject);
 procedure Remove(const NotifyProc: TNotifyEvent);
 overload;
 procedure Remove(const NotifyProc: TNotifyProc);
 overload;
 property IsProc[index: Integer]: Boolean
 read GetIsProc;
 property Methods[index: Integer]: TNotifyEvent
 read GetMethods write SetMethods;
 property Procs[index: Integer]: TNotifyProc
 read GetProcs write SetProcs;
 end;

implementation

{ TNotifyList }

constructor TNotifyList.Create;
begin
 inherited;
 FCode := TList.Create;
 FData := TList.Create;
end;

destructor TNotifyList.Destroy;
begin
 FData.Free;
 FCode.Free;
 inherited
end;

procedure TNotifyList.Add(const NotifyProc: TNotifyEvent);
var

On Language
 m: TMethod;
begin
 if (Assigned(NotifyProc) and
 (IndexOf(NotifyProc) < 0)) then
 begin
 m := TMethod(NotifyProc);
 FCode.Add(m.Code);
 FData.Add(m.Data);
 end;
end;

procedure TNotifyList.Add(const NotifyProc: TNotifyProc);
begin
 if (Assigned(NotifyProc) and
 (IndexOf(NotifyProc) < 0)) then
 begin
 FCode.Add(@NotifyProc);
 FData.Add(nil);
 end;
end;

procedure TNotifyList.Clear;
begin
 FCode.Clear;
 FData.Clear;
end;

function TNotifyList.Count: Integer;
begin
 Result := FCode.Count;
end;

procedure TNotifyList.Delete(index: Integer);
begin
 FCode.Delete(index);
 FData.Delete(index);
end;

function TNotifyList.GetIsProc(index: Integer): Boolean;
begin
 Result := (not Assigned(FData[index]));
end;

function TNotifyList.GetMethods(index: Integer):
 TNotifyEvent;
begin
 TMethod(Result).Code := FCode[index];
 TMethod(Result).Data := FData[index];
end;

function TNotifyList.GetProcs(index: Integer): TNotifyProc;
begin
 Result := FCode[index];
end;

function TNotifyList.IndexOf(
 const NotifyProc: TNotifyEvent): Integer;
var
 m: TMethod;
begin
 if (Assigned(NotifyProc) and (FCode.Count > 0)) then
 begin
 m := TMethod(NotifyProc);
 Result := 0;
 while ((Result < FCode.Count) and
 ((FCode[Result] <> m.Code) or
 (FData[Result] <> m.Data))) do
 Inc(Result);
 if Result >= FCode.Count then
 Result := -1;
 end
 else
 Result := -1;
end;

function TNotifyList.IndexOf(
 const NotifyProc: TNotifyProc): Integer;
var
 prt: ^TNotifyProc;
begin
20 June 2000 Delphi Informant Magazine
 prt := @NotifyProc;
 if (Assigned(NotifyProc) and (FCode.Count > 0)) then
 begin
 Result := 0;
 while ((Result < FCode.Count) and
 ((FCode[Result] <> prt) or
 (FData[Result] <> nil))) do
 Inc(Result);
 if Result >= FCode.Count then
 Result := -1;
 end
 else
 Result := -1;
end;

procedure TNotifyList.Notify(Sender: TObject);
var
 i: Integer;
 evnt: TNotifyEvent;
 proc: TNotifyProc;
begin
 for i := 0 to FCode.Count-1 do
 if (FData[i] = nil) then
 begin
 proc := FCode[i];
 if (Assigned(proc)) then
 proc(Sender);
 end
 else
 begin
 TMethod(evnt).Code := FCode[i];
 TMethod(evnt).Data := FData[i];
 if (Assigned(evnt)) then
 evnt(Sender);
 end;
end;

procedure TNotifyList.Remove(
 const NotifyProc: TNotifyProc);
var
 idx: Integer;
begin
 idx := IndexOf(NotifyProc);
 if (idx >= 0) then
 begin
 FCode.Delete(idx);
 FData.Delete(idx);
 end;
end;

procedure TNotifyList.Remove(
 const NotifyProc: TNotifyEvent);
var
 idx: Integer;
begin
 idx := IndexOf(NotifyProc);
 if (idx >= 0) then
 begin
 FCode.Delete(idx);
 FData.Delete(idx);
 end;
end;

procedure TNotifyList.SetMethods(index: Integer;
 const Value: TNotifyEvent);
begin
 FCode[index] := TMethod(Value).Code;
 FData[index] := TMethod(Value).Data;
end;

procedure TNotifyList.SetProcs(index: Integer;
 const Value: TNotifyProc);
begin
 FCode[index] := @Value;
 FData[index] := nil;
end;

end.

End Listing One

21 June 2000 Delphi Informant Magazine

Figure 1: The SQL-DMO object h

Columns & Rows
Microsoft SQL Server 7 / Distributed Management Objects / Windows NT / Delphi 3-5

By Jason Perry

Application

Application

SQL S

S

Backup

Permission SQLServer

QueryResults

HistoryFilter

Names

Property

Device

Login

Langua

Remote

Rem

Sub

Configu

Con

Executiv

Tas

Ale

Registry

Integrat

Alert

Opertat
Exploiting SQL Server 7 DMO
Part I: Building a SQL Server Scripting Tool

As enterprises grow more dependent on distributed database technology, the need
for powerful management applications becomes critical in keeping a multi-server

environment healthy. Because it’s impossible for a tool vendor to know all the strategies
a company will use, the tools supplied with the products are often severely limited
in capability. Microsoft recognized this problem and created a set of COM objects,
called Microsoft SQL Server Distributed Management Objects (SQL-DMO), to aid in the
management of their SQL Server DBMS.
SQL-DMO is a part of Microsoft’s SQL Distrib-
uted Management Framework (SQL-DMF). SQL-
DMF is a framework of objects and services that
are used to manage Microsoft SQL Server. It
enables you to perform unattended tasks, such as
database backup, by providing objects that work
with SQL Server. The SQL Enterprise Manager is
an example of a Microsoft product that uses the
SQL-DMF and SQL-DMO objects. For our pur-
poses, we’ll stick to exploiting SQL-DMO objects.

This two-part series demonstrates how to use
Microsoft’s SQL Server 7
DMO objects in the develop-

erver
ierarchy.

ervice

Legend

Database

Tge

Server

Database

DBObject

StoredProcedure

Rule

Default

User

Group

DBOption

TransactionLog

SystemDataType

UserDefinedDatatype

Publication

Table

Colu

D

Index

Trigg

Key

Chec

View

Article

Subscription

Object and Collection

oteLogin

scriberInfo

ration

figValue

e

k

rtSystem

edSecurity

or

Object only

Collection only
ment of database management tools and COM-
based business objects for enterprise Microsoft SQL
Server applications. While learning how to use
SQL-DMO objects, I will complete a script-writing
tool for you SQL developers. The next installment
of the series will present a database reconciliation
tool to aid in cross-database object comparisons,
and a simple security object to demonstrate how
the object can be used in your application develop-
ment. Readers are expected to be familiar with OLE
Automation, and Microsoft SQL Server 7.

What Is a DMO Object?
In a nutshell, SQL-DMO objects are in-process
OLE Automation servers. These servers expose
all of the database objects in Microsoft SQL

Server that you would nor-
mally manipulate by writing
Transact-SQL by hand (in
Enterprise Manager for
instance), or by using a
third-party tool, such as
Erwin Modelmart. Each of
these objects have properties
and methods that you
would access in code, very
much like a Delphi VCL
component. The SQL-
DMO object hierarchy is
logically arranged and

makes excellent use of collec-
tions (see Figure 1). For instance, a Server
object has a collection of Database objects.
This gives you the ability to evaluate each
database on a server through a single
OLE Automation server, as opposed to
creating new objects for each database on
your server.

able

mn

RIDefault

er

k

Figure 2: SQL-DMO required files.

File name Description

redist.txt Redistribution file list and licensing policy.
sqldmo.hlp The DMO help file. This contains just about
 everything you’d like to know about SQL-DMO
 objects, their methods, and properties.
sqldmo.dll The SQL-DMO in-process server DLL and
 COM object.
sqldmo.rll The SQL-DMO resource file.
sqlresld.dll SQL Enterprise Manager Resource DLL Loader.
sqlsvc.dll Database Service Layer.
sqlsvc.rll Database Service Layer Resource DLL.
sqlwoa.dll SQL Server Unicode/ANSI Translation Layer.
sqlwid.dll SQL Server Unicode/ANSI Translation Layer.
w95scm.dll SQL Service Control Manager Abstraction Layer.
pre60to7.SQL Creates 6.0 MSDB tables in order to “stage”
 the data being imported by Convert.
pre65to7.SQL Modifies the tables created by PRE60TO7.SQL
 to make them look like the 6.5 versions of
 those tables. Must be run after PRE60TO7.SQL.

Columns & Rows

Figure 3: The Delphi 5 Import Type Library dialog box (Delphi
4’s differs slightly).
Note how the object collections are arranged logically. The server
object has a collection of databases, the database objects have a collec-
tion of tables, the table objects have a collection of triggers, etc.

Create and Access SQL-DMO Objects from Delphi
The first thing to do is get the development environment working.
Complete source code for the three projects described in this series are
available for download in Delphi 4 and Delphi 5 versions (see end of
article for details). The code works in Delphi 3, but the IDE/menu
options differ slightly. Note that all three projects must be run from
Windows NT. There are some other requirements:
§ You must have Microsoft SQL Server 7 Client Tools installed.
§ You must have DBO SQL Server 7 security rights.
§ The Borland Database Engine (BDE) must be installed.

The easy answer to getting the required files is to install the Micro-
soft SQL Server Client Tools on your development machine. These
files (see Figure 2) are required to create and access SQL-DMO
objects, and can be browsed on your Microsoft SQL Server 7 CD.

The files in Figure 2 are redistributable, according to Microsoft’s
redistribution policy in redist.txt (be sure to read this). Note the .SQL
script files. These give you the ability to update older servers to use
the SQL-DMO objects in Microsoft SQL Server 7. Be sure to open
each script and read the headers to learn more.

Creating the SQL-DMO Objects
Once you’ve set up your development environment, you can create
and manipulate the SQL-DMO objects just as you would any other
OLE Automation object. The first thing to do is to import the type
library for the SQL-DMO COM object. From Delphi, start a new
application and save it in a meaningful directory.

Then select Project | Import Type Library to display the Import Type
Library dialog box (see Figure 3). Scroll down the window of COM
objects, select Microsoft SQLDMO Object Library (Version 7.0), then click
Install. A file named SQLDMO_TLB.pas will be created in your
application directory. This file contains all the interfaces for the
COM object, and all the enumerated types that the objects use. Even
if you are not an expert at COM, the imported type library is easy
to read and understand.
22 June 2000 Delphi Informant Magazine
The first object we’ll create is the SQLServer object. There are
several ways it can be created. First, put SQLDMO_TLB.pas in
your uses clause. The first way to create the SQLServer object is to
call the coCreate method, which is located in the implementation
section of the type library:

uses
 SQLDMO_TLB.pas
var
 SQL_DMO : _SQLServer;

SQL_DMO := CoSQLServer.Create;

There are some benefits to doing it this way. One is that the
Delphi IDE uses the unit to do type checking and provide
code completion for you. The other is that it uses a vTable
lookup to call the COM objects’ methods. This is much faster
than doing it the other way, which uses the IDispatch interface
to call the methods:

uses
 SQLDMO_TLB.pas
var
 SQL_DMO : Variant;

SQL_DMO := CreateOLEObject('SQLDMO.SQLServer');

This should look familiar to VB converts. For this article, I am going
to do it the second way. Why? Mostly so I can use the object’s
methods more loosely. Working with variants will make implement-
ing the SQL Scripting Tool easier. More on that later.

Once you’ve created the SQLServer object (by whatever method),
you will have access to all of its methods and properties, just as
you would any other Delphi VCL component. The next step is to

Columns & Rows
open a connection to the server. You may want to set a few of the
properties before opening the connection:

// Use NT Authentication (as opposed to
// SQL Server Authentication).
SQL_DMO.LoginSecure := True;
// Set a reasonable timeout.
SQL_DMO.LoginTimeout := 30;
// Autoreconnect if connection is lost.
SQL_DMO.AutoReconnect := True;
// Assign application name so server knows who I am.
SQL_DMO.ApplicationName := 'SQL Script Builder';

The LoginSecure property tells the object to use NT Authentica-
tion, or both NT Authentication and SQL Server Authentication.
Consult your data administration team to set the property correctly.
The ApplicationName property is used to name the connection to
the SQL Server. When viewing active server connections, this value
will be seen on the screen. The other properties are self-explanatory.
Next, open the connection and verify that it opened (see Figure 4).

The Connect method takes one argument — the server name we
want to connect to. Hint: If you’re using the desktop SQL Server
installation, hard-code a period (.) as the parameter. This tells it to
connect to the local server. If you create your object using the
coCreate method, you’ll have to pass it the login name and password.
This is a direct example of why I wanted to use the objects more
“loosely” and therefore chose the CreateOLEObject method. In this
case, I rely on the trusted connection to allow access to the server.

The VerifyConnection method requires an argument of type
SQLDMO_VERIFYCONN_TYPE (see Figure 5). I chose
SQLDMOConn_ReconnectIfDead from the type library that we
imported. This option will make an attempt to reconnect the server
object if it did not connect properly.

You can see how easy it is to get started. You now have a connected
SQLServer object for which you can access various object collections,
methods, and properties.
23 June 2000 Delphi Informant Magazine

// Connect.
SQL_DMO.Connect('My Server Name Here');
// Test the connection.
if not SQL_DMO.VerifyConnection(
 SQLDMOConn_ReconnectIfDead) then begin
 raise Exception.Create(
 'An error has occurred while attempting to' + #10#13 +
 'connect to the SQL OLE Server.' + #10#13#10#13 +
 'Be sure to load the SQL Server 7.x tools' + #10#13 +
 'before attempting to use SQL Script Builder.' +
 #10#13 + '(msg:dmSQL.pas/SetSQLObjectsDatabase)');
end;

Figure 4: Open and verify the connection to server.

Constant Description

SQLDMOConn_ReconnectIfDead Attempt to reconnect if not
 connected.
SQLDMOConn_LastState If not connected, return to
 the last known state.
SQLDMOConn_CurrentState If not connected, stay in
 the current state.
SQLDMOConn_Valid Validate the connection.

Figure 5: The SQLDMO_VERIFYCONN_TYPE enumerated
constants.
SQLServer Object Collections
Collections are exactly what they sound like: a homogeneous grouping
of objects referenced by a variable. They’re used throughout the
entire SQL-DMO hierarchy. They have an Item property that returns
specific objects. Note that the collections are 1-based, not 0-based, as
you’re used to. Some collections to look at include Databases, Tables,
Columns, StoredProcedures, Triggers, Indexes, Users, Logins, DatabaseRoles,
etc. When you use the Item property of each collection, you return the
Database, Table, Column, StoredProcedure, Trigger, Index, User, Login,
and Role objects, respectively. Pay particular attention to the high usage
of collections as we develop the three applications.

Building a SQL Scripting Tool
One of the things developers do on any size project is write tons
of stored procedures, views, and triggers. Unless you have a tool like
Erwin to create your scripts, you’ll have to enter them by hand in the
Enterprise Manager ISQL window. Even though it works, it doesn’t
promote consistency, nor does it have configuration management sup-
port for the scripts you write. What I’ve done is demonstrate the
use of SQL-DMO objects in a fully functional, template-based, script-
building tool I call SQL Script Builder (SSB). It allows developers to
create their own templates from which to build scripts, and also provides
a template for standard Get, Insert, Update, and Delete procedures. Data
administration teams love this because they can get the developers to
write consistent script. Developers love it because they can create their
own templates to aid their scripting, and don’t have to be hassled by
typing standards and comments for every script they create.

I want to start by showing you the tool and explaining its functionality.
As we go along, I’ll show you how I did it. Be sure to create a System
DSN, named “PUBS,” pointing to “PUBS” in your ODBC administra-
tor. I will use this database for testing purposes throughout the article.
When you start SSB, you will see a hierarchical view of the servers
available to you (see Figure 6). This uses the TSession object (which exists
in every database application by default) to get a list of SQL Servers. The
source is shown in Listing One (on page 25).

type
 PdmoObject = ^TdmoObject;
 TdmoObject = record
 SQL_DMO : _SQLServer;
 SQL_DB : _Database;
 SQL_OBJ : Variant;
 lConnected : Boolean;

 end;

Note the dmoObject variable. It is a pointer to a record of type TdmoObject:
Figure 6: The SQL Script Builder utility at run time.

24 June 2000 Delphi Informant Magazine

procedure Tbo_SQL.LoadTables(oTreeNode: TTreeNode);
var
 lcv : Integer;
 db : _Database;
 dmoObject : PdmoObject;
begin
 // Delete all of the child nodes first.
 oTreeNode.DeleteChildren;
 // Get the node's SQL_DB property.
 db := PdmoObject(oTreeNode.Data)^.SQL_DB;
 db.Tables.Refresh(True);
 for lcv := 1 to db.Tables.Count do begin
 // Table list (non-system).
 if not db.Tables.Item(lcv, Null).SystemObject then
 begin
 new(dmoObject);
 dmoObject.SQL_DMO :=
 PdmoObject(oTreeNode.Data)^.SQL_DMO;
 dmoObject.SQL_DB := db;
 dmoObject.SQL_OBJ := db.Tables.Item(lcv, Null);
 dmoObject.lConnected :=
 PdmoObject(oTreeNode.Data)^.lConnected;
 oTreeNode.Owner.AddChildObject(oTreeNode,
 db.Tables.Item(lcv, Null).name,
 dmoObject).StateIndex := 4;
 end;
 end;
 oTreeNode.expanded := True;
end;

Figure 9: The LoadTables procedure.

Figure 7: The PUBS database viewed through SSB.

Figure 8: The tables collection and Object Text window.

Columns & Rows
A pointer to each object gets created (new method) and added to
the tree node (TTreeView.AddObject). Don’t forget to clean up your
pointers in the TTreeView.OnDeletion event. All of the methods in
the dmSQL.pas unit take a TTreeNode as an argument. Now any
object is easily accessed and manipulated.

Click on the PUBS database. Navigate your way down to the stored
procedures for this object (see Figure 7). Note that as each node is
clicked, a method is called with the node.

The tree nodes under the PUBS node represent SQL-DMO collec-
tions for the SQLServer object. As you click on each node, SSB spins
through the collections and presents the data to you. At the same
time, it stores a pointer to each object in each collection, just as I
did in the LoadServers procedure. This is really handy because as the
tree nodes are selected and expanded, the pointer to each object is
readily available.

Now click on the tables node. A list of available tables appears
(see Figure 8). Next, select the “discounts” table and click on the
Object Text page. The script that created the table is presented to
you. This works for all the SQL Server objects. At the same time,
the attributes of the table are presented in the page control under
the tree view (see Figure 9).

System tables have their own node by virtue of the SystemObject
property. Notice that as I spin through the Tables collection, I test
each table object’s SystemObject property. This is how I separate the
system tables. Then I create the pointer to the record object and
assign its values. Every node has access to the SQLServer object, the
selected database object, and then itself. I also threw in a “connected”
variable that refers back to the SQLServer object. That’s it! Some
simple UI manipulation and you end up with a cool TTreeView to
navigate your SQL servers and their objects.

So, how did I get the cool script information to appear in the right-
hand page control? Each SQL Server object has a “script” method.
All I did was pass the TTreeNode into the method and invoke the
method:

procedure Tbo_SQL.GetSQLScriptText(oMemo: TMemo;
 oTreeNode: TTreeNode);
begin
 // Prevent unselected nodes from entering.
 if (oTreeNode = nil) or
 (not assigned(oTreeNode.Parent)) or
 VarIsEmpty(PdmoObject(oTreeNode.data)^.SQL_OBJ) then
 Exit;
 // Get the script.
 oMemo.text := PdmoObject(oTreeNode.data)^.SQL_OBJ.Script(
 SQLDMOScript_Default + SQLDMOScript_Drops);
end;

I also pass in a TMemo control so the method can fill it. In
my example, I call the script method with two arguments. This
returns the script that created the object and creates the DROP
script as well. You can pass any of 38 possible arguments of type
SQLDMO_SCRIPT_TYPE=TOleEnum, which can show the per-
missions, constraints, DRI, indexes, and even create the DROP state-
ments for you. This is an extremely powerful feature in itself. It
would be a good UI enhancement to add the capability to modify the
arguments. (If any of you do it, please send it to me.)

Now let’s get into the business of creating new scripts. The tool
I wrote is very drag-and-drop oriented. When you select a table

Figure 10: SSB scripting options are presented in a pop-up menu.

Columns & Rows
and right-click on it, you are presented with several options (see
Figure 10).

Select the Create Ins Procedure menu option. You will see a brand
new INSERT procedure created. The template name is templates.ini.
Defined at the top are some macros with which you can create your
own templates. To build this template, a method is again called with
TTreeNode, and a simple macro substitution is done to fill in the fields.

Select the Parse Only radio button on the tool bar, then click
the SQL speed button. The script will execute on the server.
If any errors occur, you are notified in a message dialog box.
If it’s successful, it will tell you “Successful Parse.” When the
speed button is clicked, it calls the Execute method, then calls
the Database object’s ExecuteImmediate method with the argument
SQLDMOExec_NoExec. This tells the server to parse the script and
not execute it. It’s perfect for testing the syntax of your script
before executing it. The source for the Execute method is shown in
Listing Two (on page 26).

Because that’s working well, select the Execute with Result radio
button and execute the script again. Now the script is committed
to the server. Refresh your stored procedure list and you will see
it. If you view the object text, you will see the procedure you
just created.

The Execute method is also called if you type in your own SQL script
statement. Type in:

SELECT * FROM Employee

and execute it. SSB will change pages to the Results page with the
table’s contents. In the Execute method described previously, when the
Database object’s ExecuteWithResult method is invoked, any results are
returned in another collection object. These results are traversed and
the properties used to fill the TMemo with the rows that are returned.
Piece of cake, huh?

Conclusion
In this first installment of a two-part series, we began with the basics
of SQL-DMO objects. Then, we discussed a script-writing tool for
SQL developers, named SSB.

Next month, in Part II, we’ll continue with a look at a database reconcili-
ation tool for cross-database comparisons, and a simple security applica-
25 June 2000 Delphi Informant Magazine
tion that demonstrates how a custom security object can be used in
application development. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUNE\DI200006JP.

Jason ‘Wedge’ Perry is a System Architect for OOP.COM in Chesapeake, VA.
Before accepting this position, Wedge was a self-employed consultant in
development positions ranging from grunt programmer to system architect.
In his spare time, Wedge races a Kawasaki KX250 moto-cross motorcycle for
the Elizabeth City MX Club.
Begin Listing One — The LoadServers procedure
procedure Tbo_SQL.LoadServers(oTreeView: TTreeView);
var
 lcv : Integer;
 oAliasList : TStrings;
 dmoObject : PdmoObject;
begin
 oAliasList := TStringList.Create;
 try
 // Since servers are being determined,
 // clear and reload the treeview.
 oTreeView.Items.Clear;
 Session.GetAliasNames(oAliasList);
 // Spin thru and fill aliases.
 for lcv := 0 to oAliasList.Count - 1 do begin
 if Session.GetAliasDriverName(
 oAliasList[lcv]) = 'SQL Server' then
 Continue
 else
 begin
 new(dmoObject);
 dmoObject.SQL_DMO := CoSQLServer.Create;
 // Name it.
 dmoObject.SQL_DMO.Name := '.';// oAliasList[lcv];
 // Use NT Authentication.
 // (as opposed to SQL Server Authentication).
 dmoObject.SQL_DMO.LoginSecure := True;
 // Set a reasonable timeout.
 dmoObject.SQL_DMO.LoginTimeout := 3;
 // Autoreconnect if connection is lost.
 dmoObject.SQL_DMO.AutoReconnect := True;
 // Assign application name so server
 // knows who I am.
 dmoObject.SQL_DMO.ApplicationName :=
 'SQL Script Builder';
 // Not connected yet.
 dmoObject.lConnected := False;
 // Login. (Uncomment if not loginSecure).
 // dmoObject.SQL_DMO.Login := 'sa';
 // Password.
 // dmoObject.SQL_DMO.Password := 'sa';
 // Add the object (not connected yet).
 oTreeView.Items.AddObject(oTreeView.Selected,
 oAliasList[lcv], dmoObject).StateIndex := 1;
 end;
 end;
 finally
 oAliasList.free;
 end;
end;

End Listing One

Columns & Rows
Begin Listing Two — The Execute method
function Tbo_SQL.Execute(oSourceMemo, oResultMemo: TMemo;
 oTreeView: TTreeView; lClearResultsFirst: Boolean;
 sDelimiter: string; lExecute: Boolean): Boolean;
var
 QueryResults : Variant;
 lcv, lcv2, lcv3 : Integer;
 s : string;
 db : Variant;
begin
 Result := False;
 // Empty script won't execute.
 if osourceMemo.text = '' then
 Exit;
 db := PdmoObject(oTreeView.Selected.data)^.SQL_DB;
 // Execute the SQL and return any results.
 if lExecute then
 begin
 // Execute the script and return any results.
 if oSourceMemo.SelLength > 0 then
 QueryResults := db.ExecuteWithResults(
 oSourceMemo.SelText, Length(oSourceMemo.SelText))
 else
 QueryResults := db.ExecuteWithResults(
 oSourceMemo.Text, Length(oSourceMemo.Text));
 // Spin through result sets, displaying data to user.
 if QueryResults.ResultSets > 0 then
 begin
 // Clear the results if the user wants.
 if lClearResultsFirst then
 oResultMemo.Lines.Clear;
 for lcv := 1 to QueryResults.ResultSets do begin
 // Select the result set.
 QueryResults.CurrentResultSet := lcv;
 for lcv2 := 1 to QueryResults.Rows do begin
 s := '';
 for lcv3 := 1 to QueryResults.Columns do
 s := s + TrimRight(
 QueryResults.GetColumnString(
 lcv2, lcv3)) + sDelimiter;
 oResultMemo.lines.Add(s);
 end;
 end;
 Result := True; // Has results.
 end
 else
 begin
 ShowMessage('Successful execution.');
 Result := False; // Don't have results.
 end;
 end
 else
 begin
 // Only parse the SQL.
 if oSourceMemo.SelLength > 0 then
 db.ExecuteImmediate(oSourceMemo.SelText,
 SQLDMOExec_NoExec, Length(oSourceMemo.SelText))
 else
 db.ExecuteImmediate(oSourceMemo.Text,
 SQLDMOExec_NoExec, Length(oSourceMemo.Text));
 ShowMessage('Successful Parse.');
 end;
end;

End Listing Two
26 June 2000 Delphi Informant Magazine

27 June 2000 Delphi Informant Magazine

OP Basics
VCL Controls / RTTI / Interfaces / Delphi 4, 5

By Ken Revak
Augmenting a Control
Four Approaches to Extending Native VCL Objects

Developers often need to add properties or behaviors to a number of classes. Ideally
this feature would be coded at the appropriate place in the VCL hierarchy, but this

isn’t possible due to the design of Delphi. This article investigates several techniques that
can be used to add a feature to a number of controls.
One of my petty annoyances with Delphi is that
there are several different properties used to access
the caption, text, or value of a control, so the
various techniques will be demonstrated by imple-
menting a CurrentText feature for selected controls.
Accessing CurrentText permits you to get and set
the current textual value of a control. These tech-
niques support information hiding by preventing
the client code from dealing directly with the vari-
ous Text, Caption, or Cell properties of individual
controls. CurrentText will be added to Button,
Edit, Memo, StringGrid, and ListBox controls.
Figure 1: This demonstration form will be
implemented four ways.
Demonstration Form
Figure 1 shows the form that will be re-imple-
mented to demonstrate the four approaches to
solving this problem. The Get button will retrieve
the CurrentText value of the active control and
place it in the edit box. The Set button will assign
the text of the edit box to the CurrentText property
of the active control. Note the use of SpeedButton
components to avoid the focus shifting to the
button when you click on it.

The CurrentText feature will be implemented on
the Edit, Memo, and StringGrid components in
the lower panel. The Invalid control check box
doesn’t implement the CurrentText feature; it’s used
to test the handling of that error condition. The
Test time button will report on performance by
timing how long it takes to retrieve the CurrentText
value 10,000 times.

Each example will use GetCurrentText and
SetCurrentText routines to perform housekeeping
appropriate for that example. These routines accept
the control as a TComponent, but end up calling
routines defined at the lowest levels of the hierarchy.

The Procedural Approach
Listing One (on page 29) demonstrates the pro-
cedural approach to solving this problem. Within
the GetCurrentText and SetCurrentText routines,
a series of if statements accesses the property
appropriate for that type of control. In this case,
we’re wrapping the control in access routines,
rather than modifying the control. Note that,
even in this non-object-oriented approach, we’re
using the Run-time Type Information (RTTI)
capabilities of Delphi.

The advantages of this technique are that it
can be grafted onto existing applications without

OP Basics
changing the controls already present in the UI, testing for a class
also works for its descendants (e.g. testing for TEdit also handles
TDBEdit), and it’s easy to implement and debug. Its disadvantages
are that it can cause the linker to drag in “dead” code if you don’t
use all the controls you’re checking for, it permits accessing existing
facilities, it doesn’t permit you to add data storage, and it’s not
object-oriented.

The Message-based Approach
The VCL neatly encapsulates Windows message processing. This is
done by a dispatch mechanism that accesses routines based on a
numeric index. Normally this number represents a Windows message,
but we can use our own numbers and corresponding routines. This
dispatch mechanism is present in TObject and can be used by any
class in the system. Listing Two (beginning on page 29) demonstrates
using this message-processing mechanism.

First we define our message numbers based on WM_USER and a
record structure whose first field is a two-byte integer (Cardinal) that
contains the message number to be called. I prefer to emulate the
TMessage structure, but it isn’t necessary to do so; you may add as
many fields as you need. In this case, Value will contain the string
value to be assigned or retrieved, and the predefined Result variable is
used to indicate if the operation has been performed.

The GetCurrentText and SetCurrentText routines initialize the message
structure, call the dispatch routine for the component, and then
interpret and act on the result returned. Each control implements
routines to respond to the messages, and fills in the appropriate fields
in the message record.

These routines don’t know or care what type of control they’re deal-
ing with. The key point is that we’re effectively using the dispatch
mechanism at the TObject level to call a procedure defined at the
individual control level. The GetCurrentText and
SetCurrentText procedures don’t know anything about the imple-
mentation of the individual components.

With this technique, you can pass and return complex information,
but you must implement the message routines in each control and
revise your UI to use these components. This technique can be
used for any class. However, you must be careful to prevent message
number collisions, i.e. ensure that message numbers are unique.

The Introspection Approach
Listing Three (beginning on page 30) demonstrates the introspection
approach. Here we leverage Delphi’s property-publishing capabilities
to access the CurrentText feature.

Each component implements a standard get/set property method,
and defines the property in the published section of the compo-
nent. GetCurrentText and SetCurrentText use routines and struc-
tures from the TypInfo unit to find the property, and then access
the appropriate routine.

This technique is generally limited to simple types, because it can
quickly become complex when trying to pass/return complex infor-
mation. It’s also based on the TypInfo unit, which may change from
release to release and is limited to TPersistent descendants.

The Interface Approach
Listing Four (beginning on page 31) accomplishes the CurrentText
feature by using interfaces. Interfaces were introduced by
28 June 2000 Delphi Informant Magazine
Delphi 4 to support
COM, and provide an
alternative to multiple
inheritance. Essentially,
an interface is a list of
routines that a class
agrees to implement.
Delphi provides the facil-
ities to define and access
the routines defined in an
interface.

This implementation begins by defining an interface containing the
routines to be implemented. The long hex number:

['{6298A451-1D1E-11D3-937B-0080C8E717EA}']

is inserted using CSG and is called a globally unique identi-
fier (GUID). This identifies this interface to the universe and is
guaranteed to be unique. Because we’re not using this GUID outside
the application, we don’t need to concern ourselves with entering it
into the registry.

Each control implements the interface by including it in its defini-
tion and implementing the specified routines. GetCurrentText
and SetCurrentText separately query the system to obtain the
interface for the passed component, and then use it to call the
appropriate routine.

This technique is quite flexible regarding parameters and types, and
will please object purists. It also provides a convenient mechanism to
group similar functionality, and ensures you have implemented the
interfaces you have specified at compile time.

Performance
Figure 2 contains the performance comparisons as performed on my
machine. To my surprise, the results for the various approaches are
similar, and — of themselves — don’t provide a compelling reason to
select one over the other.

Conclusion
The richness of the Delphi environment provides many ways to
solve programming problems. Here, we’ve investigated and compared
various ways of adding a feature to several controls.

The interface approach provides the best overall approach due
to its support for rich data types, compile-time checking, and
smooth implementation. The procedural approach can be useful
when you have an extensive existing code base and requirements
for a limited feature set. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
JUNE\DI200006KR.

Figure 2: Performance compari-
sons of the four approaches (in
milliseconds).

Approach Total access time

Procedural 230
Message 240
Introspection 251
Interface 241

Ken Revak is a principal of Catalyst Systems Ltd located in southern Alberta,
Canada, where he does custom programming and develops applications using
Delphi. He enjoys leveraging the features of Delphi while sneering at Visual Basic.
Ken can be reached at catalyst@telusplanet.net.

OP Basics
Begin Listing One — Procedural approach
unit Listing1;
{ Procedural approach to CurrentText feature. }

interface

uses
 Classes, StdCtrls, Grids, SysUtils, Controls;

function GetCurrentText(Component: TComponent): string;
procedure SetCurrentText(Component: TComponent;
 const Value: string);

type
 ECurrentText = class(Exception);

implementation

function GetCurrentText(Component: TComponent): string;
var
 lb : TListBox;
 sg : TStringGrid;
begin
 if Component is TEdit then
 // Use the Text property for TEdits.
 Result := TEdit(Component).Text
 else if Component is TMemo then
 // Use the selected Text for a memo.
 Result := TMemo(Component).SelText
 else if Component is TButton then
 // Use the Caption for a button.
 Result := TButton(Component).Caption
 else if Component is TListBox then
 // Use the currently selected item.
 begin
 lb := TListBox(Component);
 if lb.ItemIndex = -1 then
 Result := ''
 else
 Result := lb.Items[lb.ItemIndex];
 end
 else if Component is TStringGrid then
 // Use the currently selected cell.
 begin
 sg := TStringGrid(Component);
 Result := sg.Cells[sg.Col, sg.Row];
 end
 else
 // Raise an error if component is unknown.
 raise ECurrentText.Create(Component.Classname +
 ' is not a type known to GetCurrentText');
end;

procedure SetCurrentText(Component: TComponent;
 const Value: string);
var
 lb : TListBox;
 sg : TStringGrid;
begin
 if Component is TEdit then
 TEdit(Component).Text := Value
 else if Component is TMemo then
 TMemo(Component).SelText := Value
 else if Component is TButton then
 TButton(Component).Caption := Value
 else if Component is TListBox then
 begin
 lb := TListBox(Component);
 if lb.ItemIndex = -1 then
 lb.Items.Add(Value)
 else
 lb.Items[lb.ItemIndex] := Value;
 end
 else if Component is TStringGrid then
 begin
 sg := TStringGrid(Component);
29 June 2000 Delphi Informant Magazine
 sg.Cells[sg.Col, sg.Row] := Value;
 end
 else
 raise ECurrentText.Create(Component.Classname +
 ' is not a type known to SetCurrentText');
end;

end.

End Listing One
Begin Listing Two — Message-based approach
unit Listing2;
{ Message-based approach to CurrentText feature. }

interface

uses
 Classes, SysUtils, Messages, StdCtrls, Grids;

const
 MSG_GET_CURRENT_TEXT = WM_USER + 1000;
 MSG_SET_CURRENT_TEXT = WM_USER + 1001;

type
 ECurrentText = class(Exception);
 TCurrentTextRecord = record
 Msg : Cardinal;
 Value : string;
 LParam : LongInt;
 Result : LongInt;
 end;

 TmsgEdit = class(TEdit)
 protected
 procedure MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_GET_CURRENT_TEXT;
 procedure MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_SET_CURRENT_TEXT;
 end;

 TmsgButton = class(TButton)
 protected
 procedure MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_GET_CURRENT_TEXT;
 procedure MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_SET_CURRENT_TEXT;
 end;

 TmsgMemo = class(TMemo)
 protected
 procedure MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_GET_CURRENT_TEXT;
 procedure MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_SET_CURRENT_TEXT;
 end;

 TmsgStringGrid = class(TStringGrid)
 protected
 procedure MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_GET_CURRENT_TEXT;
 procedure MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_SET_CURRENT_TEXT;
 end;

 TmsgListBox = class(TListBox)
 protected

OP Basics
 procedure MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_GET_CURRENT_TEXT;
 procedure MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
 message MSG_SET_CURRENT_TEXT;
 end;

 function GetCurrentText(Component: TComponent): string;
 procedure SetCurrentText(Component: TComponent;
 const Value: string);
 procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('Message', [TmsgEdit, TmsgButton,
 TmsgMemo, TmsgStringGrid, TmsgListBox]);
end;

function GetCurrentText(Component: TComponent): string;
var
 msg : TCurrentTextRecord;
begin
 FillChar(msg, SizeOf(msg), 0);
 msg.Msg := MSG_GET_CURRENT_TEXT;
 Component.Dispatch(msg);
 if msg.Result <> 0 then
 Result := msg.Value
 else
 raise ECurrentText.Create(
 'CurrentText feature not found in ' +
 Component.Classname);
end;

procedure SetCurrentText(Component: TComponent;
 const Value: string);
var
 msg : TCurrentTextRecord;
begin
 FillChar(msg, SizeOf(msg), 0);
 msg.Msg := MSG_SET_CURRENT_TEXT;
 msg.Value := Value;
 Component.Dispatch(msg);
 if msg.Result = 0 then
 raise ECurrentText.Create(
 'CurrentText feature not found in ' +
 Component.Classname);
end;

procedure TmsgEdit.MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 CurrentTextRecord.Value := Text;
 CurrentTextRecord.Result := 1;
end;

procedure TmsgEdit.MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 Text := CurrentTextRecord.Value;
 CurrentTextRecord.Result := 1;
end;

procedure TmsgButton.MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 CurrentTextRecord.Value := Caption;
 CurrentTextRecord.Result := 1;
end;

procedure TmsgButton.MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 Caption := CurrentTextRecord.Value;
 CurrentTextRecord.Result := 1;
30 June 2000 Delphi Informant Magazine
end;

procedure TmsgMemo.MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 CurrentTextRecord.Value := SelText;
 CurrentTextRecord.Result := 1;
end;

procedure TmsgMemo.MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 SelText := CurrentTextRecord.Value;
 CurrentTextRecord.Result := 1;
end;

procedure TmsgStringGrid.MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 CurrentTextRecord.Value := Cells[Col,Row];
 CurrentTextRecord.Result := 1;
end;

procedure TmsgStringGrid.MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 Cells[Col,Row] := CurrentTextRecord.Value;
 CurrentTextRecord.Result := 1;
end;

procedure TmsgListBox.MsgGetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 if ItemIndex = -1 then
 CurrentTextRecord.Value := ''
 else
 CurrentTextRecord.Value := Items[ItemIndex];
 CurrentTextRecord.Result := 1;
end;
procedure TmsgListBox.MsgSetCurrentText(
 var CurrentTextRecord: TCurrentTextRecord);
begin
 if ItemIndex = -1 then
 Items.Add(CurrentTextRecord.Value)
 else
 Items[ItemIndex] := CurrentTextRecord.Value;
 CurrentTextRecord.Result := 1;
end;

end.

End Listing Two
Begin Listing Three — Introspection approach
unit Listing3;
{ Introspection approach to CurrentText feature. }

interface

uses
 Classes, StdCtrls, Grids, SysUtils;

type
 TintEdit = class(TEdit)
 private
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 published
 property CurrentText: string read GetCurrentText
 write SetCurrentText stored False;
 end;

 TintMemo = class(TMemo)
 private
 procedure SetCurrentText(const Value: string);

3

OP Basics
 function GetCurrentText: string;
 published
 property CurrentText: string read GetCurrentText
 write SetCurrentText stored False;
 end;

 TintButton = class(TButton)
 private
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 published
 property CurrentText: string read GetCurrentText
 write SetCurrentText stored False;
 end;

 TintListBox = class(TListBox)
 private
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 published
 property CurrentText: string read GetCurrentText
 write SetCurrentText stored False;
 end;

 TintStringGrid = class(TStringGrid)
 private
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 published
 property CurrentText: string read GetCurrentText
 write SetCurrentText stored False;
 end;
 ECurrentText = class(Exception);

 function GetCurrentText(Component: TComponent): string;
 procedure SetCurrentText(Component: TComponent;
 const Value: string);
 procedure Register;

implementation

uses
 TypInfo;

procedure Register;
begin
 RegisterComponents('Introspection', [TintEdit, TintMemo,
 TintButton, TintListBox, TintStringGrid]);
end;

function GetCurrentText(Component: TComponent): string;
var
 ptrPropInfo : PPropInfo;
begin
 Result := '';
 ptrPropInfo :=
 GetPropInfo(Component.ClassInfo, 'CurrentText');
 if ptrPropInfo = nil then
 raise ECurrentText.Create(
 'CurrentText property not found in Object ' +
 Component.Classname)
 else if ptrPropInfo^.PropType^.Kind in [tkString,
 tkLString] then
 Result := GetStrProp(Component, ptrPropInfo)
 else
 ECurrentText.Create(
 'CurrentText property is not a string');
end;

procedure SetCurrentText(Component: TComponent;
 const Value: string);
var
 ptrPropInfo : PPropInfo;
begin
 ptrPropInfo :=
 GetPropInfo(Component.ClassInfo, 'CurrentText');
 if ptrPropInfo = nil then
1 June 2000 Delphi Informant Magazine
 raise ECurrentText.Create(
 'CurrentText property not found in Object ' +
 Component.Classname)
 else if ptrPropInfo^.PropType^.Kind in [tkString,
 tkLString] then
 SetStrProp(Component, ptrPropInfo, Value)
 else
 ECurrentText.Create(
 'CurrentText property is not a string');
end;

procedure TintEdit.SetCurrentText(const Value: string);
begin
 Text := Value;
end;

function TintEdit.GetCurrentText: string;
begin
 Result := Text;
end;

procedure TintMemo.SetCurrentText(const Value: string);
begin
 SelText := Value;
end;

function TintMemo.GetCurrentText: string;
begin
 Result := SelText;
end;

procedure TintButton.SetCurrentText(const Value: string);
begin
 Text := Value;
end;

function TintButton.GetCurrentText: string;
begin
 Result := Text;
end;

procedure TintListBox.SetCurrentText(const Value: string);
begin
 if ItemIndex = -1 then
 Items.Add(Value)
 else
 Items[ItemIndex] := Value;
end;

function TintListBox.GetCurrentText: string;
begin
 if ItemIndex = -1 then
 Result := ''
 else
 Result := Items[ItemIndex];
end;

procedure TintStringGrid.SetCurrentText(
 const Value: string);
begin
 Cells[Col,Row] := Value;
end;

function TintStringGrid.GetCurrentText: string;
begin
 Result := Cells[Col,Row] ;
end;

end.

End Listing Three
Begin Listing Four — Interface approach
unit Listing4;
{ Interface approach to CurrentText feature }

OP Basics
interface

uses
 Classes, StdCtrls, Grids, SysUtils;

type
 ICurrentText = interface
 ['{ 6298A451-1D1E-11D3-937B-0080C8E717EA }']
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 end;
 type ECurrentText = class(Exception);

 TinfEdit = class(TEdit, ICurrentText)
 protected
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 end;

 TinfMemo = class(TMemo, ICurrentText)
 protected
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 end;

 TinfButton = class(TButton, ICurrentText)
 protected
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 end;

 TinfListBox = class(TListBox, ICurrentText)
 protected
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 end;

 TinfStringGrid = class(TStringGrid, ICurrentText)
 protected
 procedure SetCurrentText(const Value: string);
 function GetCurrentText: string;
 end;

 function GetCurrentText(Component: TComponent): string;
 procedure SetCurrentText(Component: TComponent;
 const Value: string);
 procedure Register;

implementation

procedure Register;
begin
 RegisterComponents('Interface', [TinfEdit, TinfMemo,
 TinfButton, TinfListBox, TinfStringGrid]);
end;

function GetCurrentText(Component: TComponent): string;
var
 cti : ICurrentText;
begin
 Component.GetInterface(ICurrentText, cti);
 if Assigned(cti) then
 Result := cti.GetCurrentText
 else
 raise ECurrentText.Create(
 'ICurrentText not supported by this object');
end;

procedure SetCurrentText(Component: TComponent;
 const Value: string);
var
 cti : ICurrentText;
begin
 Component.GetInterface(ICurrentText, cti);
 if Assigned(cti) then
 cti.SetCurrentText(Value)
32 June 2000 Delphi Informant Magazine
 else
 raise ECurrentText.Create(
 'ICurrentText not supported by this object');
end;

procedure TinfEdit.SetCurrentText(const Value: string);
begin
 Text := Value;
end;

function TinfEdit.GetCurrentText: string;
begin
 Result := Text;
end;

procedure TinfMemo.SetCurrentText(const Value: string);
begin
 SelText := Value;
end;

function TinfMemo.GetCurrentText: string;
begin
 Result := SelText;
end;

procedure TinfButton.SetCurrentText(const Value: string);
begin
 Text := Value;
end;

function TinfButton.GetCurrentText: string;
begin
 Result := Text;
end;

procedure TinfListBox.SetCurrentText(const Value: string);
begin
 if ItemIndex = -1 then
 Items.Add(Value)
 else
 Items[ItemIndex] := Value;
end;

function TinfListBox.GetCurrentText: string;
begin
 if ItemIndex = -1 then
 Result := ''
 else
 Result := Items[ItemIndex];
end;

procedure TinfStringGrid.SetCurrentText(
 const Value: string);
begin
 Cells[Col,Row] := Value;
end;

function TinfStringGrid.GetCurrentText: string;
begin
 Result := Cells[Col,Row] ;
end;

end.

End Listing Four

TextFile
I have a tendency to read two books
simultaneously. One is work-related
(usually containing words such as COM,
Distributed, Professional, etc. in the
title); the other is just for fun: a mys-
tery-, science-fiction-, travel-, or hobby-
related book. I even dabble in reading
literature (the shock, the horror). The
fun book I was multitasking with Eric
Harmon’s Delphi COM Programming
was Mark Twain’s travel book, The
Innocents Abroad (or The New Pilgrims’
Progress).

If you are wondering what The Innocents
has to do with a Delphi COM program-
ming book and wonder if I am out of
my mind trying to compare Mr Clem-
ens’ finest with Mr Harmon’s creation,
my little ploy has worked. Instead of
providing a dry analysis of a technical
book that would probably bore you, I
wanted to throw a little something else
in here to keep you interested in reading
this review.

So, you ask: “What is the connection
your brain managed to find between the
books?” Both books describe a voyage
of the “new world” people (1867 US of
Twain’s time and Delphi programmers
today) into the “old” world and its
culture and heritage (Europe and the
Holy Land and COM programming in a
Microsoft environment).

As Delphi programmers, we enjoy the
ease of using the VCL, Delphi’s two-way
tools, and the Object Pascal language,
which protect us from many hassles
of programming. COM, on the other

Delphi COM Programming
33 June 2000 Delphi Informant Magazine
hand, is one of these overly complex
Microsoft technologies that are either
hidden behind the scenes in Visual Basic,
or exposed with all its gory details in
C++ sample code on MSDN.

However, Delphi does for COM what
it did for WinAPI programming: It pro-
vides the functionality in a developer-
friendly manner. Delphi COM Program-
ming is an excellent book that provides the
detailed COM information you’ll find in
the MSDN documentation presented in
such a way that any Delphi programmer
will be comfortable.

Delphi COM Programming starts with a
chapter describing interfaces as a lan-
guage option. The beginner COM pro-
grammer will be introduced to inter-
faces, the difference between interfaces
and abstract classes, and the way inter-
faces are implemented and used in
Delphi classes. This chapter also intro-
duces the mother of all interfaces —
IUnknown — and how to implement
it. The chapter also describes advanced
interface issues, including interface del-
egation.

I was surprised that, even as an experi-
enced COM developer, I learned some-
thing new in Chapter 1: the existence of
the Delphi TAggregatedObject class that
helps with interface delegation.

Chapter 2 discusses simple COM objects
and provides information about in-process
vs. out-of-process COM objects, COM
threading models, server registration, and
an issue that often appears on the Delphi
Internet newsgroups — creating and
accessing variant arrays.

Type libraries — the cross-language
binary “meta-data” about classes, inter-
faces, enumeration, and other COM
entities — are described in detail in
Chapter 3. In addition to a tutorial on
how to use the Delphi Type Library
editor, the author provides an excellent
example that uses the ITypeInfo interface
to interpret the contents of a type
library. This subject has always inter-
ested me, but I never bothered to learn
more, because I had no immediate need
for its use. It’s nice to know that I now
have a well-documented sample at my
disposal, so if the need arises, I won’t
need to sift through MSDN documenta-
tion to find it.

TextFile
Chapter 4 is aptly described by the author as, “probably the
most important chapter in the book.” Especially if you’re a
novice COM programmer, I’ll have to agree with the author.
But if you’re an experienced COM developer, I think Harmon
sells some of the other chapters short. Automation is presented
in this chapter. The topics covered include automation objects,
dispinterfaces, dual interfaces, and the performance differ-
ences between them.

Chapter 4 also includes the best discussion of COM events
and callbacks programming in Delphi I’ve seen, and intro-
duces an example of Microsoft’s ActiveX Data Objects (ADO).

ActiveX controls are described in the next chapter. The Micro-
soft Agent ActiveX control set is used as an example of hosting
an ActiveX control in a Delphi application. The VCL to the
ActiveX Control wizard is described, as are simple ActiveX
controls created using Active Forms.

Unfortunately, this chapter doesn’t offer the same in-depth
information found in the previous sections. Important issues,
such as the way ActiveX controls work behind the scenes, a dis-
cussion of the important ActiveX control hosting interfaces, and
some of the problems of the VCL-to-ActiveX-Control wizard
(e.g. no support for IPropertyBag that makes these controls
unusable in MSIE) are omitted.

Of all the chapters in the book, Chapter 5 is the one that is only
of interest to a complete novice, and it may leave an experienced
developer looking elsewhere for additional information.

Using COM servers and clients in a distributed environment
is presented in Chapter 6. The text and code examples provide
a walk through of installing a DCOM Server application and
configuring it, which is the most difficult part in DCOM
application deployment.

The accompanying sample demonstrates how a server applica-
tion can be used to provide access to database information
where the client machines don’t have access to the BDE. The
sample uses nothing more than simple COM code to perform
the task without taking advantage of a middleware product
like MIDAS. The sample uses variant arrays — which are
described earlier in the book — to marshal record information
across the network.

The next couple of chapters in Delphi COM Programming are
the most interesting, as they discuss a topic with which I
wasn’t at all familiar: structured storage and some of its
uses in OLE.

Structured storage is a file system in a file that allows you to
store diverse object data in multiple streams (think of them as
files), using (optionally) a directory like the hierarchy of storage
bins (folders) in one physical file on the hard disk. COM is
an object-enabling technology, and applications that need to
persist object data are limited to streaming all the information
to/from a file or using multiple files. With structured storage,
your application can still take advantage of random access via
the hierarchical structure of your needs, with the benefit for the
end user being one physical file to manage.
34 June 2000 Delphi Informant Magazine
In these chapters, readers are introduced to the structured storage
utility methods, the IStorage and IStream interfaces, and some of
the applications of these interfaces, such as property sets. The
TOleContainer component is the last thing discussed in the chap-
ter, and issues, such as menu merging, Clipboard support, and
object insertion/removal, are discussed.

The concluding chapter in Delphi COM Programming dis-
cusses the Windows shell extensions. The topics covered
include shell context menu handlers, copy hooks, links, tray
icons, and property sheets.

The old-style API that Windows is built on is slowly fading
as Microsoft is moving to object-based APIs implemented as
COM interfaces and objects. Though Delphi does a wonderful
job of wrapping COM functionality and shielding us from the
low-level details of COM programming, sooner or later you’ll
find yourself in need of interfacing with a new technology
that will most likely be presented as an object model, COM
interfaces, etc.

If you haven’t started learning about COM, Harmon’s Delphi
COM Programming will be a great addition to your library. It
provides clear definitions of the basics and will get you started
in a hurry.

If you’re familiar with COM, but have never spent any time
learning the details, Delphi COM Programming will be a good
way to become familiar with many of the foundational building
blocks, as well as many of the more advanced topics. You’ll get a
much better understanding of COM and the way Delphi helps
you work with it.

If you’re an experienced COM developer, you could still find
topics you’re probably not familiar with that will be worth
the price of Delphi COM Programming. This was definitely the
case with me.

All that said, Delphi COM Programming still has room for
improvement. The ActiveX chapter isn’t as in-depth as I would
have liked it to be, and I feel that a chapter discussing MTS and
COM+ would have been a great addition, because they show the
way COM is evolving.

Despite these “shortcomings,” I wouldn’t hesitate to recommend
this book to any Delphi developer interested in an introduction
to COM development.

Going back to The Innocents Abroad, Twain doesn’t discuss
COM+, nor MTS for that matter. But if you want a description
of every church in Italy during the late 19th century, it’s definitely
the book for you.

— Ron Loewy

Delphi COM Programming by Eric Harmon, Macmillan Techni-
cal Publishing, 201 West 103rd St., Indianapolis, IN 46290,
http://www.newriders.com.
ISBN: 1-57870-221-6
Price: US$45 (510 pages)

http://www.newriders.com

Best Practices
Directions / Commentary
Coding Styles of the Cool and Famous

Inever watch the TV show “Lifestyles of the Rich and Famous.” Who has time for that claptrap? I prefer to examine
other people’s code to learn tricks (after all, imitation is the sincerest form of flattery). I don’t spend a lot of time

poring through just anybody’s code, however; I’m very selective. I don’t want to be led down the “garden path” by some
cowboy, hacker, or wannabe. The code I’m studying must flow from the brain of one of the best. An expert!
During forays into code created by my clever colleagues, I have often
thrust my fist into the air, yelling “Eureka!” or “That’s the ticket!” There’s
nothing like finding a block of code you can file away for later reuse.
There are giants who walk among us, the stars of the Delphi community
— those who have a natural affinity for coding and are bright, creative,
and able to solve the thorniest of problems with ease (or so it appears).

Besides elegant algorithms, there’s something else I enjoy noting as I
probe the work of these ingenious coders: the style. Coding is an art
form. Artists, once well versed in their field, develop an identifiable
style. You can listen to a composition by Bruce Springsteen or J.S.
Bach and, if you’re familiar with their work, recognize it immediately.
The same goes with paintings by Van Gogh, Dali, Picasso, etc. Is it
not to be expected that style would be identifiable in our profession?
Lest you think I jest, here’s some code to illustrate my point:

procedure TForm1.Button1Click(Sender: TObject);
VAR B1, B2, B3 : ARRAY[0..20] OF Char;
begin
 FormPtr := CreateTheForm;
 StrPCopy(B1, Edit1.Text);
 StrPCopy(B2, Edit2.Text);
 StrPCopy(B3, Edit3.Text);
 LoadTheForm(FormPtr, B1, B2, B3);
 IF ShowTheForm(FormPtr) THEN
 BEGIN
 ReadTheForm(FormPtr, B1, B2, B3);
 Edit1.Text := StrPas(B1);
 Edit2.Text := StrPas(B2);
 Edit3.Text := StrPas(B3);
 END;
 DestroyTheForm(FormPtr);
end;

Can you guess who wrote this? It’s the handiwork of Neil Rubenking,
author of Delphi Programming Problem Solver [IDG Books Worldwide,
1996] and Delphi 3 for Dummies [IDG Books Worldwide, 1997], and
columnist for PC Magazine. His style is recognizable because of the
uppercased keywords. He does this so he can easily see which code he
wrote and which was generated by Delphi. Here’s another example:

Application.OnException := FOldExceptionHandler;

if (E is EDBEngineError) and
 (EDBEngineError(E).
 Errors[0].ErrorCode = DBIERR_KEYVIOL) then
 begin
 { Handle event processing on key violation. }
 if Assigned(FOnKeyViolation) then
 FOnKeyViolation(TableName)
 else
 MessageDlg('Key Violation Error on Table ' +
 TableName, mtError, [mbOK], 0);
 end
 else
 Application.ShowException(E);
35 June 2000 Delphi Informant Magazine
If you’ve read the book Developing Custom Delphi 3 Components
[Coriolis Group Books, 1997] and/or the column “Delphi by
Design” in the now-defunct Visual Developer magazine, you
should recognize this code as belonging to Ray Konopka. He
also happens to be the creator of Raize Components, the Delphi
debugging tool CodeSight, and other goodies for Delphi
developers. The spaces used in the parentheses and brackets
give him away.

One final example:

...
 for i := Pred(Count) downto 0 do begin
 if Items[i].Action = aaDelete then
 FItemList.Delete(i)
 else if Items[i].Action <> aaFailed then
 Items[i].Action := aaNone;
 end;

 DoArchiveProgress(100, Abort);
 finally {NewStream}
 NewStream.Free;
 end;
end;
{ --- }
procedure TAZipArchive.SetZipFileComment(Value : string);
...

Whose code do you think this is? It’s none other’s than Turbo-
Power! OK, that was a trick question, as TurboPower is a com-
pany, not a person. Sometimes an unmistakable style permeates
an entire company. They also pad their method arguments with
spaces fore and aft, but not so in the array elements, setting
themselves apart from Konopka. I’ve never seen anybody else set
off procedures from one another in exactly this fashion, nor is it
common in Pascal/Delphi to place the begin keyword at the end
of a line rather than on a line by itself. And who else uses the Pred
function, for that matter!

Actually, I do, because I “stole” all three of these peculiarities
from them. Developing your own style consists partly in
“stealing” not only algorithms, but also various stylistic elements
used in the actual presentation of code. Be selective and learn
from the best. ∆

— Clay Shannon

Clay Shannon is a Delphi developer for eMake Corp., located in Post Falls, ID.
Having visited 49 states (all but Hawaii) and lived in seven, he and his family
have settled in northern Idaho, near beautiful Coeur d’ Alene Lake. He has been
working (almost) exclusively with Delphi since its release, and is the author of the
book Developer’s Guide to Delphi Troubleshooting [Wordware, 1999]. You can
reach Clay at clayshannon@usa.net.

File | New
Directions / Commentary
Delphi and Linux: Internet Resources

For the past two months, we’ve been discussing the implications surrounding Borland’s decision to develop a Linux
version of Delphi. Part of the Kylix Project that involves other Borland tools besides Delphi, this initiative has caused

a good deal of excitement and apprehension among Borland’s developer base. Since I submitted last month’s column,
there have been some interesting developments, which have caused further excitement and apprehension. However,
our main focus here is to discuss some useful Linux Internet sites. Along the way, we’ll touch on some of these new
developments and list sites where you can find additional information.
General Linux sites. If you’re looking for a version of Linux that
installs under Windows 95/98, check out the Armed Linux site
at http://www.armed.net. You can download a free copy from
this site. You can also investigate the links to other Linux sites,
including Linux resources, message boards/forums, and more. If
you’re new to Linux (as I suspect many readers of this magazine
are), you should check out The Linux Knowledge Base Project,
a relatively new site located at http://www.linuxkb.org. This well-
organized site covers the following essential topics: Applications,
Console & Shells, Editors, E-Mail, Emulators, General Linux
Information, Hardware, Programming, System Administration,
and X Windows. I was disappointed, however, in the low number
of entries that resulted from some of my searches. Hopefully this
site will continue to grow.

Of course, Borland has its own special page devoted to Linux: the
Linux Borland Community at http://community.borland.com/
linux. This site includes a wealth of news, articles, white papers,
and other applicable information. ComputerWeekly has an entire
section devoted to Linux at http://www.computerweekly.co.uk/
cw_news/cw_linux_news.asp. It also has pages devoted to
Microsoft Windows 2000, jobs, salaries, and other topics of
interest to developers.

A programming visionary. I’ve always been a fan of Jeff Dun-
temann and still keep one of his assembly books on my active book-
shelf. It was he who first got me interested in Linux with an article
in his now-defunct magazine, Visual Developer. So when Delphi
Informant Magazine Editor-in-Chief Jerry Coffey told me about
Jeff ’s online diary at http://www.visual-developer.com/diary.cfm, I
went there immediately and found a wealth of information about
Linux, Delphi, and many other topics. Even if you have no interest
in Linux, I recommend you visit the site and treat yourself to his
humor and insights.

One site Duntemann mentions is the Free Pascal site at http://gd.
tuwien.ac.at/languages/pascal/fpc/www. He discusses some of his
experiences working with the DOS version of FreePascal 32. His
assessment is very positive, calling it “an incredible piece of work
... with a WinSock library, clones of virtually all BP7 standard
units (including Turbo Vision), and the beginnings of a Delphi-style
component architecture.” I am tempted to follow his example and
run some of my ancient BP7 programs with it.
36 June 2000 Delphi Informant Magazine
Free Pascal describes itself with these words on its site: “The language
syntax is semantically compatible with TP 7.0 (Borland or Turbo Pascal
version 7.0); some extensions used by Delphi (classes, RTTI, exceptions,
ANSI strings) are also supported. Furthermore, Free Pascal supports
function overloading and other such features.” This site is definitely
worth checking out, even if you have little interest in Linux at this point.

The Lazarus Project is an offshoot of Free Pascal. They describe
themselves on their Web Site (http://www.lazarus.freepascal.org) as
follows: “Lazarus is the class libraries for Free Pascal that emulate
Delphi. Free Pascal is a GPLed compiler that runs on Linux, Win32,
OS/2, 68K, and more. Free Pascal is designed to be able to understand
and compile Delphi syntax, which is, of course, OOP. Lazarus is the
part of the missing puzzle that will allow you to develop Delphi-like
programs in all of the above platforms. Unlike Java, which strives to
be a write once run anywhere, Lazarus and Free Pascal strives for write
once compile anywhere. Since the exact same compiler is available on
all of the above platforms it means you don’t need to do any recoding
to produce identical products for different platforms.” Sounds pretty
cool, don’t you think? But let’s not forget Borland. There have been
some interesting developments there as well.

The merger. In the middle of writing this series of articles, a major
bombshell hit our corner of the computing world: the proposed
merger of Inprise and Corel. I trust most of you have read the
announcement on Borland’s site. Have you looked into Corel’s slant
on the merger? In an interview at http://www.upside.com/texis/
mvm/open_season?id=389f63bb0, Derek Burney, executive vice
president of engineering and CTO of Corel Corp., spoke of his
company’s well-known commitment to putting sophisticated Linux
applications on the desktop and the desire to go further with Linux
development tools. This is where Inprise comes into the picture.
Among other things, he stated “We needed strength on the server
side, and Borland offers that with middleware, developer tools, Java.
It was perfect. That’s why this came up so fast. Imagine Word Perfect
Office 2000 using Delphi as a scripting language. It could truly be a
back office. Now we throw in JBuilder and JavaBeans and you’ve got
industrial-strength Web development on top of that. Just skimming
the surface, we’ve come up with dozens and dozens of ways where
the technology can be used on both sides.”

There are a number of Delphi sites that have been following these
developments. One of them, Richy’s Delphi-Box, includes the Corel

http://www.armed.net
http://www.linuxkb.org
http://community.borland.com/linux
http://community.borland.com/linux
http://www.computerweekly.co.uk/cw_news/cw_linux_news.asp
http://www.computerweekly.co.uk/cw_news/cw_linux_news.asp
http://www.visual-developer.com/diary.cfm
http://gd.tuwien.ac.at/languages/pascal/fpc/www
http://gd.tuwien.ac.at/languages/pascal/fpc/www
http://www.lazarus.freepascal.org
http://www.upside.com/texis/mvm/open_season?id=389f63bb0
http://www.upside.com/texis/mvm/open_season?id=389f63bb0

File | New
link and several others on the following page devoted to the merger:
http://inner-smile.com/delphin.htm#corinpr.

In a season of mergers, the Inprise/Corel merger is not
the only new arrangement involving the makers of Delphi.
A partnership between Inprise/Borland and TurboLinux has
also been announced (see http://biz.yahoo.com/prnews/000216/
ca_inprise_1.html). The name itself should suggest some affinity
for those who remember Turbo Pascal, the great ancestor of
Delphi. But consider also the TurboLinux slogan: “Integrating
Linux into the Enterprise.” There’s a familiar ring to it. For more
information on this new partner, check out their home page at
http://www.turbolinux.com.

For more information on Corel’s Linux strategy, check out the Corel
site at http://linux.corel.com/webcast/merger/corel_linux.htm. Like
Borland, this company is also pursuing its own new arrangements. It
recently announced that its LINUX OS would be bundled with hard-
ware from http://www.TheLinuxStore.com, including their Personal
Internet Appliance desktop and workstation computers. You can find
additional information on this arrangement at The Andover News
Network (http://www.andovernews.com/cgi-bin/news_story.pl?
143286,topstories).

Late-breaking news. I just learned of an excellent “Kylix
Study Guide” by John Kaster on the Borland site at http://
community.borland.com/article/0,1410,21122,00.html. I strongly
recommend visiting it, as it’s geared specifically at those of us who
are getting ready to enter the world of Linux from that of Delphi.

I would be remiss if I didn’t mention that these developments —
Borland’s Linux initiative and its merger with Corel — haven’t met
with universal enthusiasm and support from the developer base.
Some developers worry that emphasis on Linux will undermine sup-
port for Windows development tools like Delphi. Others wonder if
Corel is the best of all possible merger partners, suggesting that Sun
Microsystems might have been a better choice. I remain cautiously
optimistic. First, I expect the development of Linux tools to be slow
and incremental, having little initial effect on Borland’s support for
Delphi and C++Builder. Second, I see a good deal of historical and
mutually beneficial logic behind the merger. For example, Corel is
still using the BDE in some of its applications. However, only time
will tell. Until next time. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University,
specializing in music composition and music theory. He has been
developing education-related applications with the Borland languages
for more than 10 years. He has published a number of articles in
various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in
applications, particularly sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.
37 June 2000 Delphi Informant Magazine

http://inner-smile.com/delphin.htm#corinpr.
http://biz.yahoo.com/prnews/000216/ca_inprise_1.html
http://biz.yahoo.com/prnews/000216/ca_inprise_1.html
http://www.turbolinux.com
http://linux.corel.com/webcast/merger/corel_linux.htm
http://www.TheLinuxStore.com
http://www.andovernews.com/cgi-bin/news_story.pl?143286,topstories
http://www.andovernews.com/cgi-bin/news_story.pl?143286,topstories
http://community.borland.com/article/0,1410,21122,00.html.
http://community.borland.com/article/0,1410,21122,00.html.

	Table of Contents
	Delphi Tools
	TurboPower Announces SysTools 3
	UIL Releases Security System 2.06
	IP*Works!Java Edition Now Shipping
	Brainbench Offers Certification Exam Online
	Seagate Introduces Crystal Reports 8
	Delphi Pages Offers Delphi Pages CD Version
	TechSmith Announces SnagIt 5.0
	InstallShield Software Ships InstallShield Pro 2000 Second Edition

	Delphi News
	C.Robert Coates Announces Resignation from Inprise Board of Directors
	Inprise to Supply Ericsson for Network Management Integration
	Inprise/Borland Announces Borland C++Builder 5
	Inprise/Borland Announces JBuilder 3.5

	Greater Delphi
	Palm Programming
	Device Programming
	Databases
	Conduits
	Getting Started with Conduit Development
	EHAND Connect
	The Conduit Objects
	Conclusion

	In Development
	Why on Earth Use Multiple Threads?
	New World Order
	Design
	Synchronization (Terminate Traps)
	Visualization
	A Way Out
	Implementation
	Field Agent
	How It Works
	Start and Finish
	Reports
	At Headquarters
	No More Synchronize/OnTerminate
	Conclusion
	Begin Listing One — Client field agent
	Begin Listing Two —TActivityProcess

	On Language
	Events and TMethod
	Calling Methods by Name
	Retrieving the Object from the Event Property
	Using Data/Self as a Hidden Parameter
	Using a Stand-alone Procedure as an Event Handler
	TNotifyList
	Conclusion

	Columns & Rows
	What Is a DMO Object?
	Create and Access SQL-DMO Objects from Delphi
	Creating the SQL-DMO Objects
	SQLServer Object Collections
	Building a SQL Scripting Tool
	Conclusion
	Begin Listing One — The LoadServers procedure
	Begin Listing Two — The Execute method

	OP Basics
	Demonstration Form
	The Procedural Approach
	The Message-based Approach
	The Introspection Approach
	The Interface Approach
	Performance
	Conclusion
	Begin Listing One — Procedural approach
	Begin Listing Two — Message--based approach
	Begin Listing Three — Introspection approach
	Begin Listing Four — Interface approach

	TextFile
	Best Practices
	File | New

